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The human visual ability to recognize objects and scenes is widely thought to rely on
representations in category-selective regions of the visual cortex. These representations
could support object vision by specifically representing objects, or, more simply, by rep-
resenting complex visual features regardless of the particular spatial arrangement needed
to constitute real-world objects, that is, by representing visual textures. To discriminate
between these hypotheses, we leveraged an image synthesis approach that, unlike previ-
ous methods, provides independent control over the complexity and spatial arrange-
ment of visual features. We found that human observers could easily detect a natural
object among synthetic images with similar complex features that were spatially scram-
bled. However, observer models built from BOLD responses from category-selective
regions, as well as a model of macaque inferotemporal cortex and Imagenet-trained
deep convolutional neural networks, were all unable to identify the real object. This
inability was not due to a lack of signal to noise, as all observer models could predict
human performance in image categorization tasks. How then might these texture-like
representations in category-selective regions support object perception? An image-
specific readout from category-selective cortex yielded a representation that was more
selective for natural feature arrangement, showing that the information necessary for
natural object discrimination is available. Thus, our results suggest that the role of the
human category-selective visual cortex is not to explicitly encode objects but rather to
provide a basis set of texture-like features that can be infinitely reconfigured to flexibly
learn and identify new object categories.

ventral visual stream j deep neural networks j object perception j texture representation j BOLD

Images engineered to have the same complex visual features as natural images can
appear metameric (1, 2), that is, perceptually indistinguishable although physically
different from the original natural image. In particular, by matching image statistics
(3, 4), including the pairwise correlations of orientation and spatial frequency filters (5)
or the pairwise inner products of feature maps from Imagenet-trained deep con-
volutional neural networks (dCNNs) (6–8), it is possible to synthesize images which
appear indistinguishable from the corresponding natural image, despite having a
spatially scrambled arrangement of features (9, 10). This metamer synthesis approach
is particularly effective for visual textures, such as bark, gravel, or moss, which
contain complex visual features that are largely homogeneous over space (11–15). The
synthesis approach has been used to study the phenomenon of crowding (16) in
peripheral vision (10, 17, 18), where observers can fail to bind visual features to corre-
sponding objects when presented in visual clutter (19, 20). The neural representation
of complex visual features has also been studied with texture synthesis approaches
(21–25).
However, images which contain inhomogeneous visual features, such as those of

objects or natural scenes, are perceptually distinct from synthesized images which con-
tain the same complex visual features but in scrambled spatial arrangements (14, 26,
27). This suggests that the underlying neural representation of objects and scenes, in
contrast to that of textures, is sensitive to the particular spatial arrangement of features
found in objects and scenes in the natural world.
The lateral occipital and ventral visual cortex of humans are potential cortical sub-

strates for such representations which distinguish objects and natural scenes from syn-
thesized, scrambled counterparts. Studies of early visual cortical representations suggest
that sensitivity to the midlevel visual features contained in texture images can be found
in areas V2 (21–23) and V4 (24, 25, 28), while category-selective representations in
higher-level visual cortical areas within lateral occipital cortex (LO) and ventral tempo-
ral cortex (VTC) are informative for decoding object categories (29–35) and predicting
object categorization behavior (30, 36, 37). Thus, one might hypothesize that cortical
representations in category-selective regions underlie the perceptual ability to discrimi-
nate natural object images from synthesized images containing spatially scrambled
arrangements of complex visual features (38–43).
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However, evidence of texture bias in dCNN models (44–46)
of the ventral visual stream suggests that it is possible to encode
features useful for discriminating visual object categories
without explicitly encoding the global arrangement of those
features. Imagenet-trained (47) dCNNs have achieved state-
of-the-art performance at modeling ventral visual cortical repre-
sentations (48–52), but, unlike human perception, these
dCNN models are biased to classify image category based on
texture rather than shape information (53–56). That is, when
texture and shape information are put into conflict, Imagenet-
trained dCNNs frequently report the image category based on
texture information, whereas humans reliably report the cate-
gory consistent with the shape. The evidence of texture bias in
dCNNs but not in human perception suggests two possible
hypotheses: Either dCNNs may not be accurate models of the
primate ventral visual cortex, particularly with regard to the
processing of shape information, or the representations in
the ventral visual cortex are also texture-like (57) and are there-
fore insufficient to account for humans’ perceptual ability to
discriminate natural scenes from synthesized images containing
the same complex visual features in scrambled arrangement.
One approach to address whether the human ventral visual

cortex explicitly represents the spatial arrangement of features
that defines an object or natural scene is to examine the repre-
sentational dissimilarity between natural images and synthesized
images that have the same visual features but are scrambled.
Prior studies employing this scrambling technique have been
instrumental for the discovery of complex feature selectivity
and invariance in high-level visual cortical areas (28, 57–61).
However, these studies have often used methodologies for
scrambling visual features which confound sensitivity to com-
plex visual features with sensitivity to the spatial arrangement
of those features. For example, Grill-Spector et al. (58) reported
object sensitivity in LO by contrasting the blood oxygen
level–dependent (BOLD) response to natural object images
with the response to grid-scrambled images, a scrambling
approach which breaks up complex visual features. Similarly,
Rust and DiCarlo (28) demonstrated enhanced selectivity and
tolerance to objects in macaque inferotemporal (IT) cortex
by comparing neural responses to natural object images with
responses to synthesized scrambles containing only low- and
midlevel visual features. Thus, it remains undetermined
whether cortical representations in category-selective regions of
the visual cortex are merely sensitive to the presence of complex
visual features or whether they are also sensitive to the spatial
arrangement of those features. Furthermore, prior research has
primarily examined the magnitude of response averaged across
entire cortical areas (21, 58–60), rather than the multivariate
patterns of population activity that might provide much richer
featural representations. Finally, this work has largely over-
looked the link between these cortical representations and the
perceptual behaviors which they support.
In the present study, we compared the ability of human

observers, dCNN models, and cortical representations in
category-selective regions of the human visual cortex to discrim-
inate natural images from synthesized images containing scram-
bled complex features. We sought to avoid the confound
between feature complexity and spatial arrangement by adapt-
ing a hierarchical, spatially constrained image synthesis algo-
rithm that allows control over the complexity of features and
the spatial extent over which those features can be scrambled in
the synthesized output (6, 7). In an oddity detection task, we
found that human observers readily discriminated natural from
synthetic images of objects, although performance was sensitive

to the complexity and spatial arrangement of visual features. In
stark contrast, Imagenet-trained dCNN models performed at
chance level when the synthetic images contained complex visual
features, regardless of the spatial arrangement of those features.
Human visual cortical responses measured with BOLD imaging,
as well as models of macaque IT neurons, similarly performed
poorly in detecting the natural image. These results were not sim-
ply due to measurement noise, as we found that visual cortical
BOLD responses could match human performance in category
discrimination and that patterns of BOLD activity for different
synthetic and natural images were reliable and discriminable.
Rather, the representational distance between natural and syn-
thetic images was not significantly greater than the distance
between synthetic images, suggesting a texture-like representation
of objects which does not preferentially represent the natural spa-
tial arrangements of object features.

Results

Human Perceptual Sensitivity for Natural vs. Synthesized
Images. To assess perceptual sensitivity to the complexity and
spatial arrangement of features, we used an oddity detection
task (see Fig. 2A), in which subjects were presented with three
images on each trial (one natural, two synthesized) and asked
to choose the odd one out, that is, the image which appeared
the most different from the others. Images subtended 8° in
diameter and were centered 6° from the center of fixation. On
each trial, both synthesized images (“synths”) were matched to
the features of the natural image at a particular level of feature
complexity and spatial arrangement constraint. To synthesize
images, we extracted feature maps from various VGG-19 layers
(e.g., pool1, pool2, pool4) in response to a natural image, then
computed the pairwise dot products between each pair of fea-
ture maps (Gramian) within subregions of different levels of
spatial constraint (from least spatially constrained, 1 × 1, where
features could be spatially scrambled across the whole image to
most spatially constrained, 4 × 4, in which features could only
be scrambled within 16 subregions of the image) (Fig. 1A).
Then, we iteratively optimized the pixels of a randomly initial-
ized white noise image to minimize the mean squared error
between its Gramian feature representation and that of the
original. We will refer to the feature complexity of a synth to
indicate the latest dCNN layer whose features were extracted
and matched to the original. We will use the term spatial con-
straint or spatial arrangement to indicate the size of the spatial
pooling regions within which those features were matched.
Across trials, we varied the feature complexity of the synths as
well as the degree to which the spatial arrangement of those fea-
tures was constrained (Fig. 1B). We will use the term image
class to refer to the set of images including a given natural
image and all its feature-matched synths.

In the oddity detection task, we found that human observers
were less able to detect the natural image among synths with
more-complex features. That is, we examined detection perfor-
mance as a function of the feature complexity of the synths,
pooled across all observers and averaged across all spatial con-
straints. We reasoned that this would be informative of which
features are utilized in the perception of natural images of
objects. We found that increasing the feature complexity of the
synths resulted in a significant decline (linear mixed effects
model: b = �0.103, SE = 0.007, P < 0.001, 95% CI =
[�0.116, �0.090], n = 87) in the proportion of trials where
the natural image was chosen as the oddity (Fig. 2C; note the
downward slope of the purple line), suggesting that human
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observers are perceptually sensitive to the complexity of visual
features in object images.
We found that human observers were also less able to detect

the natural image among synths with more constrained feature
arrangement. To arrive at this conclusion, we assessed percep-
tual sensitivity for the spatial arrangement of visual features by
analyzing oddity detection performance as a function of the
spatial constraints in the synths, pooled across all observers, fix-
ing feature complexity at the highest level (pool4). We reasoned
that, if observers were no less able to detect the natural image
among synths whose features were constrained within small
subregions of the image (e.g., 4 × 4 condition) as compared to
synths whose features were scrambled across the entirety of the
image (1 × 1 condition), this would demonstrate that humans
are insensitive to the arrangement of complex visual features.
We found, instead, that the proportion of trials where subjects
selected the natural image as the odd one out significantly
decreased (linear mixed effects model: b = �0.087, SE =
0.011, P < 0.001, 95% CI = [�0.108, �0.066]) as the
arrangement of object features was more strongly constrained
(Fig. 2D; note the downward slope of the purple line). This
pattern of behavior was consistent regardless of whether behav-
ioral data were collected in-laboratory with fixation enforced
(SI Appendix, Fig. S3) or online. These findings demonstrate
that human observers’ perception of objects is not only sensitive

to the presence of the complex visual features that make up an
object but also to the particular spatial arrangement of those
features.

dCNN Observer Models. To compare the behavior of dCNN
models to that of human observers, we constructed an observer
model that uses dCNN features to perform the oddity detec-
tion task (Fig. 2B). On each trial, we first extracted a feature
vector corresponding to each image, from the last convolutional
layer of an Imagenet-trained dCNN. We then computed the
Pearson distance between each pair of feature vectors. To deter-
mine which image was most different from the other two, we
computed the dissimilarity of each image by averaging the dis-
tance from each image’s feature vector to each of the two other
images’ feature vectors. These dissimilarities were then trans-
formed into choice probabilities using a softmax function, with
one free parameter controlling how sensitive the model is to
dissimilarity differences, which was estimated to maximize the
likelihood of human observers’ choices. We evaluated the per-
formance of five different Imagenet-trained dCNNs: VGG-19
(62) (the same model used for image synthesis), CORnet-Z
(63), VGG-16 (62), ResNet-18 (64), and AlexNet (46). We
hypothesized that, if dCNNs are an accurate model of human
object perception, they ought to match human performance at
this oddity detection task, in terms of sensitivity to both feature
complexity and spatial arrangement.

Analysis of the dCNN observer models’ performance showed
that, when synths contained more-complex features, the models
were less able to identify the natural image as the odd one out.
That is, we compared each model’s performance to human
oddity detection performance as a function of the feature com-
plexity of the synthesized images contained, averaged across all
spatial constraints. Like human observers, almost all models
were very likely to select the natural image when presented
among synths containing only low-level visual features
(Fig. 2C, pool1). However, increasing the feature complexity of
the synths resulted in a steep decline in the probability of
selecting the natural image (linear mixed effects model: b =
�0.249, SE = 0.001, P < 0.001, 95% CI = [�0.251,
�0.247]), such that all dCNN observer models were not signif-
icantly more likely than chance (b = �0.038, SE = 0.012, P =
0.998, 95% CI = [�0.061, �0.014]) to identify the natural
object image among two synths containing complex visual fea-
tures (Fig. 2C, pool4). This contrasts with human observers,
whose frequency of selecting the natural image as the oddity
did decline with increasing feature complexity but was still sig-
nificantly above chance even at the highest level of feature
complexity (Fig. 2C; purple line). Taken together, these obser-
vations suggest that dCNN observer models are sensitive to the
presence of complex visual features in objects, but not to their
spatial arrangement.

Indeed, we found that dCNN observer models failed to
detect the natural image among synths containing complex
visual features, regardless of how spatially scrambled those fea-
tures were. We examined oddity detection performance as a
function of spatial pooling region size, for the complex (pool4)
feature condition alone, to isolate the effect of spatial arrange-
ment when fixing feature complexity at the highest possible
level (Fig. 2D). Whereas human observers detected the natural
image most frequently when feature arrangement was least con-
strained (Fig. 2D, 1 × 1; note the purple line) and less fre-
quently as feature arrangement became more constrained, all
five dCNN observer models were not significantly more likely
than chance to select the natural image in any condition

A

B

Fig. 1. Image synthesis algorithm and example synths. (A) Schematic of
deep image synthesis algorithm. We pass a natural image into an
Imagenet-trained VGG19 model and extract intermediate layer activations
from layers pool1, pool2, and pool4. Then, we compute the correlation
between pairs of feature maps within a layer (Gramian) constrained within
spatial pooling regions (1 × 1, 2 × 2, 3 × 3, or 4 × 4). To synthesize, we itera-
tively update the pixels of a random seed image using gradient descent to
match the spatially pooled Gramians from the original image. (B) Example
natural images and feature-matched synths, varying in feature complexity
(columns 2 to 4, fixed at 1 × 1 spatial constraint), and varying in spatial con-
straint (columns 5 to 8, fixed at pool4 complexity).
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(b = �0.038, SE = 0.012, P = 0.998, 95% CI = [�0.061,
�0.014]) and were insensitive to variation in spatial arrange-
ment (b = 0.003, SE = 0.001, P = 0.02, 95% CI = [0.000,
0.005]) (Fig. 2D; note the flat blue lines). Thus, unlike human
observers, who reliably report that the natural image stands out
among synthesized images, dCNN models are unable to iden-
tify the natural image as the odd one out even when presented
among images whose features are scrambled across the entire
image (1 × 1). Across a large sample of object image classes
(Fig. 2E), we found that humans were significantly more likely
than all Imagenet-trained dCNN models we tested to choose
the natural image as the oddity when presented among synths
containing scrambled (1 × 1) complex (pool4) visual features
(VGG16: t = 12.84, P < 0.001; VGG19: t = 14.93, P <
0.001; CORnet: t = 14.04, P < 0.001; ResNet18: t = 17.04,
P < 0.001; AlexNet: t = 9.47, P < 0.001). Thus, given that
dCNNs were at floor performance regardless of how well con-
strained the arrangement of features was, we hypothesized that
what distinguishes humans’ perception of objects from that of
dCNN observer models is not the ability to detect complex
visual features but rather a selectivity for the particular spatial
arrangement of features found in natural objects.

Category Oddity Detection Task. These behavioral and model-
ing results demonstrate that dCNN features are insensitive to
the arrangement of complex features, suggesting that dCNNs
do not represent objects but instead contain a texture-like
representation of disjointed complex visual features. One impli-
cation of this is that object categorization, the task that
Imagenet-trained dCNNs are optimized to perform, does not
require an explicit representation of objects, merely a represen-
tation of the complex features that make up objects. To test
this, we compared the performance of human observers and
dCNN observer models in a category oddity detection task
(Fig. 3A). On each trial, observers saw three different natural
images—two of which belonged to the same category, while
the third image contained an image from a different categor-
y—and were instructed to choose the odd one out. To make
this task comparable to the previous task, subjects were
instructed to select the image which appeared most different
from the other two and were not explicitly directed to choose

the image which belonged to a different category. We hypothe-
sized that human observers’ behavior on this category oddity
detection task would be predicted well by the performance of
dCNN observer models.

Indeed, we found that human observers’ behavioral perfor-
mance at category oddity detection was matched by the perfor-
mance of dCNN observer models. We compared the frequency
with which dCNNs selected the image belonging to the odd
category out to that of human observers. We found that, across
a variety of object categories, there was no significant difference
(t = 1.16, P = 0.26, n = 16) in performance between human
observers and dCNN observers (Fig. 3B). This suggests that
dCNN representations, although insensitive to feature arrange-
ment, are informative for discriminating categories that differ
in their visual features.

Human Visual Cortex. To assess the ability of the human visual
cortex to discriminate between natural and synthesized object
images, we measured BOLD responses in the brains of seven
human observers, while subjects passively viewed natural and
synthesized (1 × 1, pool4) images from 10 different image
classes (65). Images were presented for 4 s, subtending 12°,
centered 7° to the left and right of fixation (Fig. 4A). We esti-
mated trial-averaged responses to each individual image using a
generalized linear model (66, 67). We analyzed data from 13
visual cortical areas, including V1, V2, V3, and hV4, which
were retinotopically defined (68), midfusiform (mFus), poste-
rior fusiform (pFus), inferior occipital gyrus (IOG), transverse
occipital sulcus (TOS), and collateral sulcus (CoS), which were
functionally defined using a functional localizer (69), and
lateral occipital cortex (LO), ventral visual cortex (VVC), poste-
rior IT cortex (PIT), and ventromedial visual area (VMV),
which were anatomically defined (70). We use the term early
visual cortex to refer to V1, V2, V3, and hV4, and use the
terms category-selective regions or category-selective cortex to
refer to mFus, pFus, IOG, TOS, CoS, VVC, PIT, LO,
and VMV.

We were able to measure reliable patterns of BOLD activity
in these 13 cortical areas in every subject. We estimated the
split-half reliability of each voxel as the correlation between its
responses, estimated on two different halves of image
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B Fig. 2. Human perception of objects is sensi-
tive to feature complexity and spatial arrange-
ment while dCNN observer models are insen-
sitive to spatial arrangement. (A) Oddity
detection task. Subjects saw three images,
one natural and two synths, and chose the
odd one out by key press. (B) Schematic of
dCNN observer model fit to oddity detection
task. Features are activations for each image
extracted from the last convolutional layer of
a dCNN. The Pearson distances between each
image’s feature vector is computed (d1 to d3)
and converted into choice probabilities (p1 to
p3) using a softmax function with free param-
eter β which controls how sensitive the model
is to feature dissimilarity. (C) The dCNN per-
formance (blue) compared to human perfor-
mance (purple) as a function of synths’
feature complexity, averaged across all
observers, images, and spatial constraint lev-
els. Performance indicates the proportion of
trials in which the natural image was chosen
as the oddity. Example synths from each

feature complexity level are shown at the bottom. (D) The dCNN performance (blue) compared to human performance (purple) as a function of synths’
spatial constraints, across all observers and images for pool4 feature complexity. Example synths from each spatial constraint level are shown at the bottom.
(E) The dCNN performance vs. human performance, image by image, for 1 × 1 pool4 condition. Vertical and horizontal dotted lines in C–E represent chance
level. Diagonal dashed line in E is line of equality. Error bars in C–E indicate bootstrapped 95% CIs across trials. prob., probability; prop., proportion.
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presentations. In each visual area, we selected the 100 voxels
with the highest split-half reliability, to ensure our findings
reflected a reliable signal rather than just noise. The mean reli-
ability across all subjects of the 100 selected voxels in each of
these visual areas exceeded the chance level derived from per-
mutation testing in all analyzed visual areas (RV1 = 0.70; RV2 =
0.68; RV3 = 0.63; RhV4 = 0.56; RmFus = 0.30; RpFus = 0.47;
RIOG = 0.42; RCoS = 0.45; RTOS = 0.44; RLO = 0.58; RVVC =
0.33; RPIT = 0.33; RVMV = 0.44).
To determine whether visual cortical responses could support

behavior in the oddity detection task, we constructed an
observer model that used BOLD responses to choose the image
which was most different (Fig. 4B). On each trial, we first
extracted a vector of voxel responses from a given visual area to
each of the three images that the human saw, then computed

the Pearson distance between each response vector, averaged
together each pair of distances to estimate the representational
dissimilarity of each image (mean distance from other two
images), and then transformed the dissimilarities into choice
probabilities using a softmax function. We evaluated the ability
of this cortical observer model to identify the odd image out in
both the category oddity detection task, where two objects of
the same category were presented alongside a third object of a
different category, and the natural-vs.-synth oddity detection
task, where two synths containing scrambled complex visual
features were presented alongside a natural image.

In a category oddity detection task, human observers’ behav-
ioral performance was matched by that of a cortical observer
model using BOLD responses from the human visual cortex.
We found that there was no significant difference (V1: t =
�1.49, P = 0.17; V2: t = �0.75, P = 0.47; V3: t = �1.04,
P = 0.32; hV4: t = 4.47, P = 0.02; mFus: t = �4.05, P =
0.03; pFus: t = �0.88, P = 0.40; IOG: t = �1.18, P = 0.27;
CoS: t = �4.31, P = 0.02; TOS: t = �1.46, P = 0.18; LO:
t = �1.94, P = 0.09; VVC: t = �1.17, P = 0.29; PIT: t =
0.74, P = 0.48; VMV: t = �1.63, P = 0.14) in the likelihood
of selecting the odd category out between human behavior and
human cortical responses in all visual cortical regions analyzed
except three (hV4, mFus, and CoS, all marginally significant)
(Fig. 4C). Early visual cortical regions were able to discriminate
some categories, likely due to basic featural differences between
categories, but not all categories (Fig. 4C; note the blue points
in top left). These results suggest that the BOLD responses we
measured in human visual cortex contain useful information
for discriminating between different categories.

When discriminating natural images from feature-matched
scrambled synths, cortical responses were unable to match the
performance of human observers. Across several different image
classes, we found that all observer models constructed using
responses from each visual area were significantly less likely
(V1: t = �5.89, P < 0.001; V2: t = �6.25, P < 0.001; V3:
t = �6.21, P < 0.001; hV4: t = �5.76, P < 0.001; mFus: t =
�8.70, P < 0.001; pFus: t = �6.78, P < 0.001; IOG: t =
�6.36, P < 0.001; CoS: t = �5.32, P < 0.001; TOS:
t = �6.66, P < 0.001; LO: t = �5.93, P < 0.001; VVC: t =
�7.76, P < 0.001; PIT: t = �5.24, P < 0.001; VMV: t =
�6.53, P < 0.001) to identify the natural object image com-
pared to human observers (Fig. 4D). This suggests that visual
cortical responses, across distinct functional and anatomical
areas including early visual cortex (V1, V2, V3, hV4), ventral
temporal cortex (mFus, pFus, CoS, VMV, VVC, PIT), and lat-
eral occipital cortex (LO, IOG, TOS) do not preferentially rep-
resent the natural arrangement of object features relative to
scrambled arrangements containing the same complex visual
features, which suggests that representations in category-
selective regions of the human visual cortex lack selectivity for
natural feature arrangement.

Model of Macaque IT Cortex. These BOLD imaging data sug-
gest that category-selective regions of the human visual cortex
can discriminate different categories but are nonselective for
natural feature arrangement. It is, however, possible that neural
selectivity for natural feature arrangement is only observable at
higher spatial (e.g., individual neurons) or temporal (e.g., indi-
vidual spikes) resolutions. To attempt to address this concern
in the absence of novel electrophysiological recordings, we
employed an existing published dataset of macaque IT electro-
physiological recordings as well as a dCNN-based model of
those macaque IT neural sites.
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proportion of trials in which the odd category out was correctly chosen.
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resent chance level. Error bars indicate bootstrapped 95% CIs across trials.
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Fig. 4. BOLD responses match human performance at category discrimi-
nation but not natural-vs.-synth discrimination. (A) Stimulus design for
BOLD imaging experiment. Natural and synthesized images were pre-
sented to the left and right of fixation while subjects performed a color dis-
crimination task at the fixation cross. (B) Schematic of cortical observer
model which uses BOLD responses to perform oddity detection task. Con-
ventions are similar to Fig. 1B. (C) Cortical observer model vs. human
performance on category oddity detection task, category by category. (D)
Cortical observer models vs. human performance, image by image, on
natural–synth discrimination task. Diagonal dashed line is line of equality.
Vertical/horizontal dotted lines represent chance level. Error bars indicate
bootstrapped 95% CIs across trials. prob., probability; prop., proportion.
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Using a dataset of macaque IT multiunit electrode record-
ings (71) as input to a cortical observer model, we found that,
in a category oddity detection task, macaque IT responses
matched human performance. That is, we used the spike rate
(averaged across a temporal interval of 100 ms) recorded for
each of 168 neural sites as a response vector which was used to
compute oddity choice probability similarly to our other
observer models. We compared this IT observer model’s perfor-
mance to human performance on a category oddity detection
task using the same images presented to the macaques. We
found that the human and IT observer model performance
were not significantly different (t = �0.235, P = 0.821) (Fig.
5B), suggesting that macaque IT contains feature representa-
tions useful for discriminating between images of different
categories.
To examine the ability of neurons in macaque IT cortex to

perform the natural-vs.-synth oddity detection task, in the
absence of electrophysiological recordings in response to our
synths, we evaluated, instead, a dCNN-based model of IT neu-
ronal response. This model was constructed by linearly trans-
forming the feature space from a late convolutional layer of an
Imagenet-trained dCNN to maximize predictivity of a popula-
tion of 168 IT neural sites (71), an approach which has yielded
state-of-the-art performance at predicting out-of-sample IT
neural responses (48, 72). This IT model explains, on average
across sites, 51.8% of the variance in neural response to held-
out images (72). We used the responses of these model IT sites
as inputs to an observer model constructed to perform the odd-
ity detection task (Fig. 5A). On each trial, the observer model
computed the response of the model IT sites to each of the
three images, then computed dissimilarity and choice probabil-
ity similarly to our other observer models. We evaluated two
different dCNN models fit to IT response, one from the final
convolutional layer of Alexnet and the other from VGG19 layer
pool5.

We found that these dCNN-based models of IT sites were
unable to match human performance discriminating natural
from synthesized images. That is, in an oddity detection task
where subjects saw one natural image and two synths with
complex (pool4) features in a scrambled (1 × 1) arrangement,
we found that humans were significantly more likely (t = 9.46,
P < 0.001, n = 87) than a model of IT to pick the natural
image across a wide variety of image classes (Fig. 5C). This
finding suggests that the model IT population does not prefer-
entially represent the natural arrangement of features compared
to scrambled arrangements containing the same complex
features.

Representational Geometry Analysis. The discrepancy in
behavior on the natural-vs.-synth oddity detection task between
human observers and dCNN models, category-selective regions
of the human visual cortex, and macaque IT models suggests a
misalignment in the underlying representational geometries
which give rise to the observed behaviors. Therefore, we directly
analyzed the representational spaces of dCNNs, category-selective
visual areas, and model IT, and compared them to the perceptual
representational space, which we inferred from behavioral
responses in an independent perceptual task.

By estimating perceptual distances between images from an
independent behavioral experiment, we found that the repre-
sentations underlying human object perception must be selec-
tive for natural feature arrangement. Specifically, we presented
two pairs of images on each trial and asked observers to choose
which pair was more internally dissimilar (Fig. 6A) (73, 74).
With the responses from this experiment pooled across all
observers, we used a modified version of maximum likelihood
difference scaling (MLDS) (73) to estimate the perceptual dis-
tances between pairs of images. Whereas the original MLDS
method estimates the position of different stimuli along a single
dimension to maximize the likelihood of the psychophysical
responses (N free parameters for N stimuli), we directly esti-

mated pairwise distances between each pair of stimuli (
N
2

� �

free parameters for N stimuli) to eliminate any assumptions
about the dimensionality of the representational space. We
visualized those distances by plotting the three images presented
on a given trial of the oddity detection task in a triangle, such
that the length of the edges corresponded to the pairwise per-
ceptual distances, a visualization which we will refer to as a tri-
angular distance plot (Fig. 6 B–K). We similarly visualized the
representational geometries of the final convolutional layer of a
dCNN model, human category-selective visual cortex, and a
model of macaque IT neurons.

For the category discrimination task, we found that the rep-
resentational geometry of human visual perception was well
aligned with that of dCNNs, human category-selective visual
cortex, and macaque IT neurons. The estimated perceptual dis-
tance between two images of two different categories signifi-
cantly exceeded the estimated perceptual distance between two
images of the same category (t = 93.49, P < 0.001) (Fig. 6B;
note the narrow triangles). Similarly, for dCNN models
(Fig. 6C), category-selective regions in the human visual cortex
(Fig. 6D), and macaque IT cortex (Fig. 6E), the representa-
tional distance between images of different categories signifi-
cantly exceeded the representational distance between images of
the same category, albeit not quite as extremely as was found
for human perception (Fig. 6B). This alignment of representa-
tional geometry (Fig. 6F) explains why human performance on
the category oddity detection task was well matched by that of
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Fig. 5. IT observer model matches human performance at category dis-
crimination but not natural-vs.-synth discrimination. (A) Schematic of IT
observer model which uses 168 macaque IT multiunit responses to images
as feature vectors and computes dissimilarity and choice probability simi-
larly to the observer model in Fig. 1B. For the category oddity task, we
examined responses measured from macaque IT cortex (71), whereas, for
the natural–synth task, responses were simulated using a dCNN linearly fit
to the dataset. (B) IT observer model vs. human performance on category
oddity detection task, category by category. (C) IT observer model vs.
human performance on natural–synth discrimination task, image by image.
Diagonal dashed line is line of equality. Vertical and horizontal dotted lines
represent chance level. Error bars indicate bootstrapped 95% CIs across tri-
als. prob., probability; prop., proportion.
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dCNN observer models (Fig. 3B), category-selective regions of
visual cortex (Fig. 4B), and macaque IT neurons (Fig. 5B).

However, for the natural-vs.-synth discrimination, we found
a misalignment between the representational geometry of
human visual perception and those of dCNNs, category-
selective regions of the human visual cortex, and model IT. For
human visual perception, we found that the estimated percep-
tual distance between the natural image and the synthesized
images was significantly greater (t = 69.25, P < 0.001) than
the perceptual distance between two different synths of the
same class (Fig. 6G; note the narrow triangles), which reflects a
selectivity for natural feature arrangement. In contrast, for all
dCNN models we tested, we found that the representational
distance between the natural image and the synthesized images
was not significantly different (t = �0.46, P = 0.65, n = 87)
from the representational distance between two different syn-
thesized scrambled images (Fig. 6H; note the approximately
equilateral triangles), suggesting that dCNN observer models
are nonselective for natural feature arrangement of objects. Sim-
ilarly, using BOLD responses from category-selective regions,
we found that the representational distance between a natural
image and a feature-matched synth was not significantly greater
than the representational distance between two different synths
of the same image class (t = �1.52, P = 0.17) (Fig. 6I), and,
in a model of IT neurons, the representational distance between
a natural image and a feature-matched synth was not signifi-
cantly different (t = 0.78, P = 0.44) from the representational
distance between two different synths (Fig. 6J). These findings
demonstrate that representations in dCNN models, category-
selective regions of the visual cortex, and a model of macaque
IT neurons are nonselective for natural feature arrangement of
objects and that the representational geometry of the visual cortex
is therefore misaligned with that of human visual perception.

Control Analysis: Validating the Effect of Spatial Arrangement
with Texture Stimuli. Our results thus far suggest that what
differentiates human perception from visual cortical and dCNN
representations is sensitivity to spatial arrangement of complex
features. However, an alternate explanation is that the superior
performance of human observers at discriminating natural from
synthesized images might be driven by low-level artifacts in the
synthesis process to which dCNN models and high-level visual
cortex are insensitive. To control for this potential confound, we
utilized a class of stimuli, visual textures, which are inherently
defined by their invariance to the spatial arrangement of features.
If artifacts in the image synthesis process were responsible for the
superior performance of human observers, then we would expect
that human observers should still be much more likely than
dCNN or cortical observer models to identify the natural texture
image as the odd one out. However, if the discrepancy in perfor-
mance between humans and dCNN models is due to sensitivity
to spatial arrangement as we hypothesized, then we would expect
humans to be less able to accurately detect the natural texture
image, resembling the performance of dCNN and visual cortical
observer models.

We found that human observers’ oddity detection perfor-
mance for textures matched that of dCNN models, unlike for
objects. We selected 12 natural texture images (e.g., bricks,
rocks, grass, moss, and bark) with a relatively homogeneous
spatial distribution of features and synthesized corresponding
images which varied in their feature complexity and spatial
arrangement. We compared the performance of human observ-
ers with five different dCNN observer models as we varied
both the feature complexity and spatial arrangement of the
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Fig. 6. Representational geometry misalignment between humans and
model/cortical representations for natural vs. synth discrimination. (A) Pair-
wise dissimilarity judgment task. Subjects saw two pairs of images and
reported which pair was more dissimilar, by key press. Responses from
this task were used to estimate the relative perceptual distances between
pairs of images. (B) Perceptual distances, estimated via modified MLDS,
between images of different categories and images of the same category,
for three example triplets, estimated across repeated presentations of
each triplet. (C) The dCNN representational distances, averaged across
dCNN models, between images of different categories and images of the
same category, for three example triplets. (D) Cortical representational dis-
tances between images of different categories relative to images of same
category, for three example triplets. Gray clouds around images represent
split-half distance, that is, distance between neural response to each image
on two halves of presentations. (E) Macaque IT representational distances
between images of different categories and images of same category, for
three example triplets. (F) Triangular distances averaged across all catego-
ries. (G–K) Same as A–E but for natural–synth representational distance rel-
ative to synth–synth distances for 1 × 1 pool4 synths.
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synthesized images of textures. We found that human observ-
ers’ likelihood of identifying the natural image was not signifi-
cantly different (linear mixed effects model: b = 0.027, SE =
0.014, P = 0.066, 95% CI = [�0.002, 0.055]) from the
dCNN models (SI Appendix, Fig. S1 A and B). Using a repre-
sentational geometry analysis, we found that the perceptual
distance between natural texture images and synths only mar-
ginally exceeded (t = 3.38, P = 0.006) the perceptual distance
between two different synths (SI Appendix, Fig. S1C). In com-
parison to objects, the perceptual representation of textures was
significantly less selective for natural feature arrangement (t =
�13.96, P < 0.001). As expected, the representational geometry
of dCNNs (SI Appendix, Fig. S1D) and human category-
selective cortex (SI Appendix, Fig. S1E) for textures also reflected
a similar nonselectivity for the natural arrangement of features.
In sum, these results suggest that the representations in the
human visual cortex and dCNN models can better account for
human perception of textures, which are invariant to feature
arrangement, than of objects.

Do Neural and dCNN Representations Contain Information
about Spatial Arrangement? To reconcile the discrepancy
between neural representations and perception with regards to
selectivity for natural feature arrangement, we sought to find a
transformation of the cortical representation that might better
approximate human perception. To quantify the ability of a
particular representational space to distinguish natural objects
from synths with scrambled matching features, we developed a
natural image selectivity index that measures the degree to
which the representational distance between the natural image
and the synths exceeds the distance between two different
synths.

Selectivity Index ¼ dnatural ,synth � dsynth1,synth2
dnatural ,synth þ dsynth1,synth2

:

We found that an unweighted readout of the cortical represen-
tation yielded a natural image selectivity index that was not sig-
nificantly different from zero (Fig. 7A, purple bars) in nearly all
category-selective visual areas (mFus: t = 1.21, P = 0.27; pFus:
t = 4.66, P = 0.003; IOG: t = 1.24, P = 0.26; CoS: t = 2.03,
P = 0.08; TOS: t = 2.45, P = 0.05; LO: t = 0.97, P = 0.37;
VVC: t = 2.09, P = 0.08; PIT: t = �0.13, P = 0.90; VMV:
t = 3.10, P = 0.02), with the marginal exception of pFus,
TOS, and VMV. This contrasts sharply with the selectivity of
perception (Fig. 7A, dashed line), in line with our finding that
the cortical observer model was unable to explain human
behavioral performance (Fig. 4D). We hypothesized that a lin-
ear transformation of cortical responses might yield a representa-
tional space that is more selective for the natural arrangement of
object features. To test this hypothesis, using gradient descent,
we sought to find a linear weighting of cortical responses which
would yield a representation that was as selective for the natural
arrangement of features as human perception.
We first tested a linear transform of visual cortical responses

that generalized across image classes but found that such a read-
out failed to increase selectivity. We used gradient descent to
find a linear weighting of cortical responses that would maxi-
mize the natural feature arrangement selectivity index. To
ensure that this transform would generalize, we cross-validated
across image classes. That is, we fit the weights to maximize the
natural image selectivity for all but one image class and then
evaluated the selectivity of the weighted representation on the
held-out image class. This procedure failed to yield a represen-
tation which was significantly more selective for natural feature

arrangement than the unweighted readout in all regions of the
visual cortex (V1: t = 2.05, P = 0.09; V2: t = 0.23, P = 0.82;
V3: t = 0.00, P = 1.00; V4: t = �1.02, P = 0.35; mFus: t =
�0.75, P = 0.48; pFus: t = �1.72, P = 0.14; IOG: t =
�1.09, P = 0.32; CoS: t = 0.56, P = 0.59; TOS: t = �0.57,
P = 0.59; LO: t = �0.91, P = 0.40; VVC: t = �0.69, P =
0.52; PIT: t = �1.94, P = 0.10; VMV: t = 1.84, P = 0.12)
(Fig. 7A, magenta bars).

We next tested whether fitting a separate linear transform for
each image class could increase the natural image selectivity of
the representation. This would suggest that the representation
contains enough information to extract the natural feature
arrangement, even if it is not generalizable across image classes.
To do so, we used gradient descent to find, for each image
class, a weighting of cortical responses that would maximize the
natural image selectivity index for that particular image class.
Therefore, for each subject, within each brain area, we fit 1,000
weights (100 voxels × 10 image classes). Since each image was
presented multiple times, we cross-validated across presentations,
such that weights were fit based on trial-averaged responses from
90% of the presentations, and selectivity was assessed on the
held-out 10% of image presentations.

We found that this image-specific weighting of cortical
responses significantly increased the natural feature arrange-
ment selectivity of the neural representation (V1: t = �3.03,
P = 0.02; V2: t = �1.94, P = 0.10; V3: t = �2.45, P = 0.05;
V4: t = �2.38, P = 0.06; mFus: t = �12.94, P < 0.001;
pFus: t = �5.94, P = 0.001; IOG: t = �3.63, P = 0.01; CoS:
t = �3.41, P = 0.01; TOS: t = �2.74, P = 0.03; LO: t =
�4.85, P = 0.004; VVC: t = �4.74, P = 0.003; PIT: t =
�2.81, P = 0.03; VMV: t = �4.13, P = 0.01) (Fig. 7A, blue
bars) in all cortical areas, although it was still unable to reach
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be read out from the visual cortex. (A) Natural image selectivity index
across all analyzed cortical regions, for unweighted readout (purple),
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8 of 13 https://doi.org/10.1073/pnas.2115302119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 A
ks

ha
y 

Ja
ga

de
es

h 
on

 A
ug

us
t 4

, 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
73

.2
23

.7
3.

19
3.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115302119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115302119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115302119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115302119/-/DCSupplemental


the level of selectivity observed behaviorally (V1: t = �2.99,
P = 0.024; V2: t = �3.00, P = 0.024; V3: t = �2.53, P =
0.045; V4: t = �7.34, P < 0.001; mFus: t = �18.81, P <
0.001; pFus: t = �6.79, P < 0.001; IOG: t = �11.47,
P < 0.001; CoS: t = �4.65, P = 0.003; TOS: t = �5.80, P =
0.001; LO: t = �5.61, P = 0.001; VVC: t = �6.40, P =
0.001; PIT: t = �7.18, P < 0.001; VMV: t = �8.55,
P < 0.001). This form of readout, however, requires prior
experience with every individual image to learn an image-
specific linear transform, so it is unlikely to be a plausible
mechanism by which visual cortical responses could directly
support perception. Rather, it demonstrates that the informa-
tion about natural feature arrangement can be found in these
visual areas but would likely require further untangling to yield
a representation which is more predictive of behavior.
We corroborated these results using a support vector

machine (SVM) classifier with a linear kernel trained to classify
images as natural or synthesized. When trained using either
cortical responses (SI Appendix, Fig. S2A) or dCNN features
(SI Appendix, Fig. S2B), the SVM classifier was only able to
classify images accurately if those image classes were included
in its training set.
It is possible that the final layer of dCNN models, which

transforms the feature representation into class probabilities for
image categorization, is more selective for natural object feature
arrangement than the convolutional layers. To test this, we ana-
lyzed the representational geometry of the last fully connected
layer in each dCNN model in comparison to that of the final
convolutional layer. We found that, in three out of four dCNN
models, the last fully connected layer was marginally more
selective for natural feature arrangement compared to the last
convolutional layer (t = �2.98, P = 0.058) (SI Appendix, Fig.
S6A), although it was still significantly less selective for natural
feature arrangement than human observers (t = �14.90, P <
0.001). This demonstrates the plausibility of a nonlinear read-
out to transform the feature representation in dCNNs or the
visual cortex to yield a representation which better matches per-
ceptual selectivity for natural feature arrangements of objects.

Discussion

Through the measurement and analysis of human behavior,
cortical responses, and dCNN features, we sought to character-
ize the visual representations which enable the perception of
natural objects. We found that human visual perception is sen-
sitive to the complexity of features in objects and selective for
the natural arrangement of object features. In contrast, we
found that both dCNN features and visual cortical responses
were relatively poor at distinguishing natural images from syn-
thesized scrambles containing complex features. A model of
macaque IT neurons was also similarly insensitive to the
arrangement of features in object images. This insensitivity was
not due to a lack of featural representations but rather due to
an insensitivity to spatial arrangement, as demonstrated by the
evidence that representations in dCNNs, category-selective
regions of the human visual cortex, and macaque IT matched
human performance in both a category oddity task and a tex-
ture oddity task, which did not require selectivity for feature
arrangement. Thus, we concluded that both the human visual
cortex and dCNN models do not preferentially represent natu-
ral object images compared to scrambled images of complex
object features and are therefore unable to directly account for
the human perceptual ability to discriminate natural from syn-
thesized images of objects. This suggests that further

computation beyond feed-forward ventral visual cortical
response is required to support human object perception (75),
although the complex visual features represented are a useful
intermediate representation. To confirm this, we demonstrated
that the information necessary to match perceptual selectivity for
natural images is decodable from category-selective regions of the
human visual cortex, although it requires a specialized image-
specific readout. Taken in sum, our results suggest that the repre-
sentations found in the human visual cortex, macaque IT cortex,
and Imagenet-trained dCNNs encode the complex visual features
that make up objects, although they do not preferentially encode
the natural arrangement of features which defines an object.

Although the image synthesis technique that we employed
allowed us to separately control the complexity and spatial
arrangement of visual features in synthesized images, it is likely
that feature complexity and spatial arrangement are not fully
independent dimensions. That is, complex visual features are
composed of particular arrangements of simpler features. This
is best exemplified by the recent finding that a dCNN with ran-
dom filters at multiple spatial scales can be used to synthesize
textures which are perceptually similar to the original and com-
parable to the quality of textures synthesized by a trained model
(6, 76). Nonetheless, it is useful to artificially vary the spatial
arrangement of features at different levels of complexity to
assess the contributions of each of these to perception. This
utility is best demonstrated by the contrast between object and
texture perception: Whereas human observers’ perception of tex-
tures was sensitive to the complexity of visual features but not the
spatial arrangement of those complex features, object perception
was sensitive to both the complexity and arrangement of visual
features. Further, this disentangling of feature complexity and
spatial arrangement is justified by the finding that, at a particular
level of feature complexity (pool4), there was a mismatch between
human perception and cortical representations in terms of selec-
tivity for natural images relative to synthesized images.

To demonstrate the lack of cortical selectivity for natural fea-
ture arrangement, we used two convergent pieces of cortical
evidence: BOLD imaging of the human visual cortex and a
model of macaque IT neurons. The BOLD imaging data were
limited in their spatial and temporal resolution but offered
broad coverage of many visual areas across the occipital and
temporal lobes. To address the possibility that selectivity for
natural feature arrangement might only be observable at higher
resolutions, we utilized a well-validated model of macaque IT
neurons. This method, too, had its limitations, as the model
does not explain all the variance in IT neural responses, and it
is possible that the unexplained variance might account for the
perceptual selectivity for natural feature arrangement. However,
even state-of-the-art techniques can only measure from a few
thousand neurons in a localized region of the brain, which
would leave open the possibility that selectivity for natural fea-
ture arrangements might be found when considering a larger,
more representative sample of neurons. Therefore, given that
both of our approaches, one with wide spatial coverage and
another which simulates individual neuronal responses, yielded
convergent results, we conclude that all our available evidence
suggests there is a mismatch between human perception and
representations in category selective cortex.

It is possible that this mismatch between human perception
and cortical representations is due to subjects in the neuroimag-
ing experiment passively viewing the images while performing a
fixation task, in contrast to subjects in the behavioral experi-
ment who were actively attending to the images. This possibil-
ity might imply that feedback, in the form of attention or other
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top-down signals, transforms visual cortical representations to
facilitate the discrimination of natural from synthesized images.
Therefore, our results should only be taken to apply to the
feedforward cortical representations generated while passively
viewing images. However, given that these passively generated
feedforward representations were sufficient to match behavioral
performance in the category oddity task, it is nonetheless note-
worthy that feedforward responses do not preferentially repre-
sent natural images relative to synthesized scrambled images
containing similar features.
Our results contribute to a large body of research about the

texture-like encoding of peripheral vision (10, 18, 19). Despite
the stimuli in our experiments being presented in the visual
periphery, human subjects were highly sensitive to the spatial
arrangement of features for object-like stimuli but not for
texture-like stimuli, in line with recent findings (14). We extend
these findings to demonstrate that visual cortical representations
of peripherally presented objects are not selective for the natural
spatial arrangement of visual features. It is possible that, had we
measured cortical responses to foveally presented stimuli, we
might have found a greater degree of selectivity for natural fea-
ture arrangement. However, the stimuli from the macaque IT
dataset were presented at the center of gaze, yet we found that
the model IT representation was insensitive to natural feature
arrangement. Further, we presented the stimuli peripherally in
the behavioral experiments while enforcing fixation (SI Appendix,
Fig. S3) and nonetheless observed selectivity for natural feature
arrangement, so it is unlikely that our results could be explained
by the texture-like encoding of peripheral vision alone.
These results suggest a possible cortical mechanism to

explain a series of discrepant findings in the scene perception
literature regarding why human observers cannot distinguish
feature-matched synths (10) but can easily distinguish natural
images of objects from feature-matched synths (14). An influ-
ential study (10) demonstrated that matching first- and second-
order statistics within spatial pooling regions, whose size
matched V2 receptive fields, results in metameric images. How-
ever, subsequent work (14, 15) has shown that this metamerism
only holds when comparing two synthesized samples but breaks
down when one of the samples is the original image. It is par-
ticularly the case that human subjects can easily discriminate
natural images from synths with scrambled features for objects
or scenes more than for textures (14). If the synths are gener-
ated to match the locally pooled features of the natural image,
then why might humans be able to discriminate the natural
image from a synth but unable to discriminate two different
synths? Our behavioral results corroborate the findings of ref.
14, suggesting that image content—that is, whether an image
contains an object or a texture—matters beyond just the size of
spatial pooling regions in terms of whether a natural image is
perceptually distinct from synthesized counterparts. Our
BOLD imaging data corroborate the findings of refs. 10 and
21, that the ventral stream contains texture-like representations,
but also suggests a possible cortical mechanism by which this
texture-like representation can support the enhanced discrimi-
nability of natural objects from synths, via a specialized object-
specific readout.
In the domain of face perception, prior research has sought

to distinguish selectivity for complex features from selectivity
for the arrangement of those features. There is evidence sug-
gesting that face-selective visual areas in the ventral temporal
cortex are sensitive to the spatial arrangement of facial features,
as demonstrated by the finding that the mean response of all
voxels in the fusiform face area is greater to intact faces than

faces containing scrambled facial features (60), as well as the
finding that a linear classifier can decode intact vs. scrambled
faces (61), which might seem to contradict our findings. How-
ever, these prior findings relied on handpicked features or grid-
based scrambling approaches. Due to the limited number of
stimuli in our sample, we did not specifically examine selectiv-
ity for spatial arrangement of facial features, so we cannot make
any claims about whether our approach using deep image
synthesis would confirm or contradict prior studies using hand-
picked features. Regardless, given the degree to which face-
selective cortical populations appear to be highly functionally
specialized and anatomically segregated compared to other
object-selective populations in VTC and LO, it is certainly pos-
sible that the neural representation of faces might be explicitly
selective for the natural arrangement of facial features, while
most other objects are represented by a collection of disjointed
complex visual features.

Our results contribute to a long-standing debate about
whether the perception of objects is holistic or featural. Behav-
ioral effects, such as the Thatcher effect (77), in which subjects
are relatively insensitive to local feature rotations in an upside-
down face, or the finding that humans are better at identifying
facial features when presented in context than in isolation (78,
79), have given rise to the view that objects must be represented
holistically, not as an independent set of features. In the present
study, we assess holistic perception as the degree to which the
whole object is perceptually distinct from the scrambled fea-
tures of the object. Using the oddity detection task, we found
that the natural image is far more perceptually distinct from a
synthesized scrambled image than two different scrambled
images are from each other, suggesting that humans perceive
objects holistically. However, cortically, we found that natural
objects are not represented more distinctly from synths than
two different synths are from one another, suggesting a nonho-
listic representation. These results suggest that holistic percep-
tion of objects may arise from a featural cortical representation.

Our findings build upon recent research demonstrating that
Imagenet-trained dCNN models are texture-biased, that is,
more likely to make use of texture than shape information
when classifying images, in contrast to humans who are shape
biased (53, 54, 56, 80). However, while these prior studies
were taken as evidence that dCNNs are a poor model of visual
representations in the human brain, our results demonstrate
that representations in the visual cortex are as texture-like as
those of dCNNs, and, therefore, both dCNNs and category-
selective regions of the visual cortex similarly deviate from
human behavior. When texture and shape cues are artificially
made to conflict, either by using silhouetting (54) or by using
neural style transfer (53), Imagenet-trained dCNN models are
more likely to classify the conflicting images according to the
texture than the shape label, unlike humans. It is possible that
the texture bias of dCNNs is driven by the readout rather than
the feature representations themselves. Our results demonstrate
that dCNNs’ texture bias is driven by the lack of selectivity for
natural spatial arrangement in the feature representation itself,
not by a texture-biased readout. We note that the term shape,
while related to the concept of feature arrangement, is often
used to refer to external contour. While our image synthesis
technique does not specifically target external contours, it does
disrupt them along with any other natural arrangement of fea-
tures. Finally, our findings examining cortical representations
of objects suggest a reinterpretation of the texture bias results
(53, 54). In contrast to the suggestion that the texture bias of
dCNN models makes them flawed as models of human vision,
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we found that the human visual cortex similarly contains
texture-like representations of objects. We can thus speculate
that this texture-like representation, which is nonselective for
natural feature arrangements of objects, might be useful for the
perception of objects. This might seemingly contradict the
finding that texture-biased dCNNs are more susceptible to
image distortions than their shape-biased counterparts (53).
However, our results suggest the possibility that texture-like
representations need not necessarily be less robust, if coupled
with a sufficiently sophisticated readout.
What potential advantage is there to a representation that

encodes complex visual features but does not prioritize the nat-
ural arrangement of these features? Classic theories of object
vision have posited that objects can be identified by the
arrangement of more simple building blocks or primitives (43).
Our findings suggest that textures are one of these basic build-
ing blocks that are encoded by category selective cortex. Cate-
gory selectivity of visual cortical areas then comes from visual
features that are informative for particular category judgements.
For example, parahippocampal place area, although known for
selectivity for scenes and places (81, 82), is also highly active
for more simple rectilinear features that are building blocks for
that category (83). Our findings further show that, despite not
being selective for the natural arrangement of visual features,
that information has not been lost in the cortical representa-
tion. That is, a classification analysis could decode (on an
item-by-item basis) the natural spatial arrangement. If sensory
representations were, instead, specific for a particular arrange-
ment of complex visual features, this might preclude the possi-
bility of learning new arrangements of features for novel object
categories. The implication is that it is beneficial to have a fea-
ture representation in high-level visual cortex that is nonselec-
tive for natural spatial arrangement, because it might allow for
more rapid, robust transfer learning, the repurposing of learned
features for novel objects or tasks. This is certainly true of
Imagenet-trained dCNN models, whose learned feature space
can be easily repurposed for new object categories or even for
other tasks (84, 85), simply by learning a new linear readout.
Taken together, our results suggest that cortical visual responses
in category-selective regions represent not objects, per se, but a
basis set of complex visual features that can be infinitely trans-
formed into representations of the myriad objects and scenes
that we encounter in our visual environments.

Materials and Methods

Behavioral Methods.
Observers. Eighty-seven observers, naive to the goals of this study, performed
100 trials of the natural–synth oddity detection behavioral experiment, 85
observers performed 50 trials of the category oddity experiment, and 110
observers performed 100 trials of the dissimilarity judgment experiment, on
Amazon Mechanical Turk. Subjects were eligible to participate if their human
intelligence task (HIT) approval rate (percentage of completed HITs that were
approved by prior requesters) exceeded 75%. Subjects’ data were excluded only
if their performance on trivial catch trials failed to exceed 40% accuracy (chance
level performance was 33%). To validate the online findings, in-laboratory behav-
ioral data were collected from two observers, where each observer performed at
least 5,000 trials. For the neuroimaging experiment, seven observers (four
female, three male, mean age 28 y, age range 23 y to 37 y), six naive to the
goals of the study, participated as subjects in two 1-h scans at the Stanford Cen-
ter for Neurobiological Imaging. All protocols were approved beforehand by the
Institutional Review Board for research on human subjects at Stanford University,
and all observers gave informed consent prior to the start of the experiment by
signing a form.

Stimulus generation. The stimuli used in all experiments were either natural
images of real objects/textures or synthetically generated through an iterative
optimization procedure (“synths”) designed to match features from a target
image. To synthesize images, we passed a target natural image into an
Imagenet-trained VGG-19 dCNN model (62) and extracted the activations from
three intermediate layers (pool1, pool2, and pool4) (Fig. 1A). We calculated a
spatially constrained Gramian matrix, that is, the inner product between every
pair of activation maps, of each layer’s activations, which allowed us to
spatially pool features over image subregions of predefined sizes. Finally, we
iteratively updated the pixels of a random white noise image to minimize the
mean-squared error between the spatially weighted Gramians of the output
image and the target image. Thus, by varying the size of the spatial pooling
regions, we could vary the degree to which feature arrangement was spatially
constrained, and, by varying which layers’ features were included in the
loss function of the optimization, we could control the complexity of visual fea-
tures in the synthesized image. See SI Appendix, Extended Methods for
more detail.
Experimental design: Oddity detection task. On each trial (Fig. 2A), observers
were concurrently presented with three images for up to 2 s and asked to
respond, by key press (up, left, or right), anytime during the 2-s interval, indicat-
ing which image appeared most different from the others. In the natural–synth
task, one image was a natural image, and the other two were synths, matched
to the features of the natural image, at a particular dCNN layer and spatial con-
straint level. We performed the natural–synth experiment both on Amazon
Mechanical Turk (n = 87 subjects, 6,165 trials) and in the laboratory (n = 2 sub-
jects, 5,000 trials each). In the category oddity task, two images contained
objects of the same category, and the third image contained an object from a
different category. This experiment was performed on Amazon Mechanical Turk
(n = 85 subjects, 3,448 trials). See SI Appendix, Extended Methods for
more detail.
Experimental design: Pairwise dissimilarity task. From an independent set of
110 observers, we measured relative dissimilarity judgments of pairs of images.
On each trial, subjects were concurrently presented with four images, grouped
into two pairs, and were asked to indicate, with a left or right key press, which of
the two pairs was more dissimilar. See SI Appendix, Extended Methods for
more detail.
Estimating perceptual distances. Using behavioral responses from the pair-
wise dissimilarity judgment task, we estimated the perceptual distances between
pairs of images. We used a modified version of the maximum-likelihood differ-
ence scaling model (73) to estimate the perceptual distances between pairs of
images as free parameters in an optimization procedure designed to maximize
the likelihood of the observed behavioral responses. See SI Appendix, Extended
Methods for more detail.

dCNN Methods. We modeled task performance using features extracted from
a dCNN. We tested the representational space of five different Imagenet-trained
dCNNs: VGG-19 (62), CORnet-Z (63), VGG-16 (62), ResNet-18 (64), and AlexNet
(46). On each trial, our model extracted a feature vector from the last convolu-
tional layer of the dCNN for each image presented (Fig. 3A). Next, we computed
the Pearson distance between the features of each pair of images, and, for each
image, calculated its dissimilarity as the mean Pearson distance between that
image and each of the other two images. Finally, the model converted these dis-
similarities into choice probabilities using a Softmax transform. See SI Appendix,
Extended Methods for more detail.

To analyze the representational space learned by Imagenet-trained dCNN
models, we employed a representational similarity analysis to compute the Pear-
son correlation distance between the activations from the last convolutional layer
in response to each pair of images (86). We then used these representational
distances to determine the selectivity of this feature space for natural feature
arrangement, computed as

dnatural,synth � dsynth1,synth2
dnatural,synth þ dsynth1,synth2

:

Modeling IT Neurons. To estimate object selectivity of neurons in IT cortex, we
modeled the response of each IT neural site (71) as a linear combination of
dCNN units (48, 51, 87, 88). Using this population of model IT neurons, we
modeled oddity detection task performance and calculated the representational
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selectivity for natural feature arrangement. See SI Appendix, Extended Methods
for more detail.
Neuroimaging methods. We used BOLD imaging (89) to measure cortical
responses to visually presented images, both natural and synthesized (1 × 1
pool4), from 10 different categories. Images subtended 12°. We defined cortical
areas using population receptive field mapping to identify retinotopic areas in
early visual cortex (68, 90–92), in addition to an atlas-based approach to identify
anatomically defined areas (70) and a functional localizer to identify category-
selective regions (69). Using a generalized linear model (66, 67), we extracted
trial-averaged responses to individual images. We used these responses as input
to observer models to perform the task as well as to compute the selectivity of

neural representations for natural feature arrangement. See SI Appendix,
Neuroimaging Methods for more details.

Data Availability. BOLD imaging data have been deposited in Open Science
Framework (https://osf.io/gpx7y/).
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