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a b s t r a c t 

How does attention enhance neural representations of goal-relevant stimuli while suppressing representations 

of ignored stimuli across regions of the brain? While prior studies have shown that attention enhances visual 

responses, we lack a cohesive understanding of how selective attention modulates visual representations across 

the brain. Here, we used functional magnetic resonance imaging (fMRI) while participants performed a selective 

attention task on superimposed stimuli from multiple categories and used a data-driven approach to test how 

attention affects both decodability of category information and residual correlations (after regressing out stimulus- 

driven variance) with category-selective regions of ventral temporal cortex (VTC). Our data reveal three main 

findings. First, when two objects are simultaneously viewed, the category of the attended object can be decoded 

more readily than the category of the ignored object, with the greatest attentional enhancements observed in 

occipital and temporal lobes. Second, after accounting for the response to the stimulus, the correlation in the 

residual brain activity between a cortical region and a category-selective region of VTC was elevated when that 

region’s preferred category was attended vs. ignored, and more so in the right occipital, parietal, and frontal 

cortices. Third, we found that the stronger the residual correlations between a given region of cortex and VTC, 

the better visual category information could be decoded from that region. These findings suggest that heightened 

residual correlations by selective attention may reflect the sharing of information between sensory regions and 

higher-order cortical regions to provide attentional enhancement of goal-relevant information. 
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. Introduction 

In the natural world, the human visual system is constantly inun-

ated by many competing stimuli, some of which are relevant for behav-

oral goals and others that are irrelevant. To sort through this abundant

isual input, human observers selectively focus their attention on im-

ortant or goal-relevant stimuli, while ignoring irrelevant distractions,

 process known as selective attention. However, it remains a mystery

ow the neural representations of attended and ignored items change to

acilitate selective processing of relevant stimuli. Solving this ongoing

uzzle requires understanding how visual inputs are represented across

he brain as well as understanding how large-scale networks coordinate

he allocation of attention to relevant representations. 

It is well-documented that attention improves performance on a wide

ariety of tasks such as sensory discrimination ( Lee et al., 1997 ) and
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arget detection ( Posner, 1980 ). The question of how attention leads

o improved behavioral performance has been a subject of prior re-

earch in both humans and animal models for many years revealing

hat: attention increases neural firing rates ( Motter, 1993 ), tunes visual

ortical responses ( Desimone and Duncan, 1995 ; Kastner et al., 1999 ,

998 ), and is associated with coordinated activity in a large-scale fronto-

arietal network (FPN; Corbetta and Shulman, 2002 ; Kastner et al.,

999 ; Nobre et al., 1997 ) that is related to goal-directed attention abil-

ties ( Fellrath et al., 2016 ; Prado et al., 2011 ). Although such studies

ave laid the groundwork for understanding the neural correlates of at-

ention, we lack a clear understanding of how attending to or ignoring

ensory stimuli modulates their neural representations across the brain.

Prior research on visual attention in humans has either examined

ow attention modulates the amplitude of cortical responses ( Kay and

eatman, 2017 ; Wojciulik and Kanwisher, 1999 ) and cortical represen-
uary 2022 
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ations of visual stimuli ( Baldauf and Desimone, 2014 ; Bugatus et al.,

017 ; Córdova et al., 2016 ; Çukur et al., 2013 ; Peelen et al., 2009 ) or

as examined how attention affects the interaction between ongoing

ctivity in various brain regions ( Al-Aidroos et al., 2012 ; Chadick and

azzaley, 2011 ; Norman-Haignere et al., 2012 ) during an attention-

lly demanding task. The former research examined the effect of at-

ention on bottom-up stimulus-evoked responses focusing mainly on

igh-level visual cortex in lateral occipital-temporal cortex (LOTC) and

entral temporal cortex (VTC) where category-selective regions reside

 Kanwisher, 2010 ) and distributed visual category representations are

alient across large cortical expanses ( Cox and Savoy, 2003 ; Haxby et al.,

001 ; Kriegeskorte et al., 2008 ; Weiner and Grill-Spector, 2013 ). These

tudies revealed that visual attention to items of certain categories en-

ances responses in category-selective regions of the attended cate-

ory ( Kay and Yeatman, 2017 ; Moore et al., 2013 ; Wojciulik and Kan-

isher, 1999 ) as well as the distributed representations ( Çukur et al.,

013 ; Peelen et al., 2009 ). Nonetheless, other studies revealed that dis-

ributed responses in LOTC and VTC represent category information for

oth attended and unattended items ( Bracci and Op de Beeck, 2016 ;

ugatus et al., 2017 ). 

Other research examined how attention affects the interaction be-

ween brain areas by measuring the correlations between the residual

ctivity of pairs of brain areas after accounting for the stimulus driven

omponent, as the residual ongoing activity is thought to capture more

f the top-down activity that one might continuously maintain while

erforming a task and is not locked to the stimulus. This approach,

hich we refer to as “residual correlations, ” measures the correlation

etween residual activities across brain regions and has been referred

o elsewhere as “background connectivity ” ( Al-Aidroos et al., 2012 ) or

task-residual functional connectivity ” ( Tran et al., 2018 ). Prior research

as revealed that attention to visual items increases the strength of resid-

al correlations between cortical regions of the frontal parietal network

FPN) and visual cortex ( Chadick and Gazzaley, 2011 ; Griffis et al.,

015 ) as well as between category-selective regions of VTC ( Norman-

aignere et al., 2012 ). 

However, two main gaps in knowledge remain. First, it is unclear

hether selective attention influences representations of visual object

ategories across the entire brain as most prior studies have focused on

 handful of theoretically important, predefined cortical regions (but see

ukur et al., 2013 ). Second, it remains unknown whether neural repre-

entations of attended or ignored information vary with the strength

f residual correlations between cortical areas and sensory regions pro-

essing the attended or ignored information. 

To address these gaps in knowledge we examined the effect of at-

ention on both visual category representations across the entire cortex

nd residual correlations between each cortical region in the brain and

ategory-selective regions in VTC ( Kanwisher, 2010 ; Peelen and Down-

ng, 2005 ), when their preferred category is selectively attended or ig-

ored. To do so, we leveraged a selective attention task we previously

eveloped ( Bugatus et al., 2017 ) while participants underwent fMRI

canning. In this task ( Fig 1 ), participants were asked to view super-

mposed images of two categories, attend to items of one category and

ndicate when items of the attended category were inverted. 

This experimental paradigm has three key advantages. First, this

elective attention task utilized stimuli from five visual object cate-

ories that can be readily decoded from their distributed responses

cross LOTC and VTC ( Bracci et al., 2017 ; Bracci and Op de

eeck, 2016 ; Bugatus et al., 2017 ; Cox and Savoy, 2003 ; Grill-

pector and Weiner, 2014 ; Haxby et al., 2001 ; Kriegeskorte et al., 2008 ;

roklova et al., 2016 ), suggesting that we can use these stimuli to mea-

ure the effect of attention on bottom-up category representations for

ttended and ignored stimuli. Second, we use stimuli that are associated

ith category-selective regions in VTC ( Kanwisher, 2010 ), in which ac-

ivity is critical for recognition of these categories ( Gaillard et al., 2006 ;

onas et al., 2014 ; Parvizi et al., 2012 ). This allowed us to examine
2 
he effect of attention on top-down brain activity by measuring residual

orrelations between each brain region and category-selective region

hen their preferred category was attended or ignored. Third, images

f items from these attended and ignored object categories were over-

aid in a single spatial location, and subjects were asked to conduct a

erceptual task, which allowed us to probe the effects of attending and

gnoring during visual competition without shifting the spatial focus of

ttention and without necessitating other cognitive processes such as

orking memory. 

Additionally, we utilized a unique analytical approach, combining

wo quantitative techniques to answer our three main questions of in-

erest. First, we aimed to test how selective attention modulates the

epresentation of attended vs. ignored visual categories by testing its

nfluence on the decodability of visual category information when the

ame items are attended or ignored. We used a data-driven whole-brain

pproach to determine where in the brain information about attended

nd ignored visual object categories are decodable. To do so, we exam-

ned the classification accuracy of category information in each of the

80 brain areas of the Glasser atlas ( Glasser et al., 2016 ), which is the

ost recent brain parcellation based on both functional and structural

etrics. While it could be the case that information about attended and

gnored object categories are equivalently decodable in all areas of cor-

ex, or that attentional enhancement is present in all areas of cortex,

ased on prior findings summarized above, we hypothesized that both

ategory information and the amount of attentional enhancement would

ary across cortical regions. 

Second, we aimed to test in a data-driven, whole-brain manner which

ortical regions have strong residual correlations with category-selective

egions of VTC when the latter regions’ preferred categories are either

ttended or ignored. Using functionally-defined category-selective re-

ions of VTC representing either attended or ignored object categories

rovided us with an anchor to then investigate residual correlations be-

ween these regions and other parts of the brain. We hypothesized that

he strongest residual correlations would be observed between regions

f cortex and a particular category-selective region of VTC (e.g., a face-

elective region in the fusiform gyrus) when participants are cued to

ttend that region’s preferred category (e.g., faces). However, an alter-

ative hypothesis, consistent with literature showing that both attending

nd ignoring require top-down cognitive control ( Martinez-Trujillo and

reue, 2004 ; Scolari et al., 2012 ), is that residual correlations with

ategory-selective regions would be equally strong regardless of whether

hose preferred categories are attended or ignored. By utilizing both

ctively-attended and actively-ignored stimuli presented simultaneously

n the same spatial location, we directly pit these competing hypotheses

gainst one another. 

Third, importantly, we investigated the relationship between the ef-

ects of attention on stimulus representations and residual correlations.

hat is, we sought to determine (i) whether there is a correlation be-

ween a region’s category representations and its residual correlations

ith VTC category-selective regions, and (ii) whether this relationship

s modulated by attention. First, we hypothesized that if residual corre-

ations reflect the sharing of information about attended visual object

ategories between VTC and other cortical regions, then it should fol-

ow that category classification accuracy would be higher in cortical

egions with stronger residual correlations with VTC category-selective

egions. Second, we hypothesized that selective attention would modu-

ate this relationship, revealing a stronger correlation between residual

orrelations and classification accuracy when images from these object

ategories are attended compared to when they are ignored. In partic-

lar, we hypothesized that this attentional enhancement of classifica-

ion accuracy and residual correlations would be prominent in regions

f the FPN, given this network’s established role in goal-directed atten-

ion. Together this combined novel approach allows us to systematically

xamine the impact of top-down selective attention on object category

epresentations and their relationship across the brain. 
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Fig. 1. Selective Attention Experiment. (a) Example trial of the selective attention experiment. In the selective attention experiment each trial contained 8 images 

each from 2 different visual object categories that were superimposed and could be either upright or upside down, presented over the course of 8 s. Participants were 

instructed to indicate with a button press when items of the cued category (in this example, a face) but not the ignored category (in this example, car) were upside 

down. Image with black contour indicates such an example in this trial. (b) Example stimuli used in the experiment. (c) Example VTC category selective regions. 
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. Materials and methods 

The fMRI data presented here were previously published in

 Bugatus et al., 2017 ) and ( Keller et al., 2021 ). Here we will briefly de-

cribe the subjects and acquisition as detailed information can be found

n the original manuscript. Additionally, we describe in detail new anal-

ses and methodological approaches that are unique to the present pa-

er and have not been published or done elsewhere. Data/Code Avail-

bility Statement: Data and code are available at https://github.com/

kjags/att _ class _ resid . 

.1. Subjects 

Subjects recruited from Stanford University participated in one of

wo studies. The first study included twelve participants (5 female, ages

3–44) whose data was previously published in ( Bugatus et al., 2017 ).

hese participants underwent fMRI scanning including three runs of the

elective Attention task and three runs of the Oddball task. The sec-

nd study included 20 additional participants (10 female, ages 18–37)

rom ( Keller et al., 2021 ) who participated in one run of the Selective

ttention task and one run of the Oddball task as well as other tasks

ot relevant to this study. Because of time constraints, they participated

n fewer runs of the Selective Attention and Oddball tasks. Seven sub-

ects were excluded because of excessive head movement ( > 2 voxels

ither within-scan or between-scans) during one or more tasks and 4

ubjects were excluded because we could not localize the majority of

TC functional ROIs of sufficient size. Thus, a total sample of twenty-

ne subjects (8 female, ages 21–44) were included in our analyses. All

ubjects had normal or corrected-to-normal vision. Ethics Statement:

ll procedures were approved by the Stanford Internal Review Board on

uman Subjects Research. Participants gave written informed consent

efore participating in this study. 
3 
.2. Data acquisition and preprocessing 

Subjects were scanned using a General Electric Sigma MR750 3T

canner located in the Center for Cognitive and Neurobiological Imag-

ng (CNI) at Stanford University using a custom-built 32-channel head

oil. Using an EPI sequence with a multiplexing (multiband) factor of 3,

e acquired 48 slices at 2.4 mm isotropic resolution, FOV = 192 mm,

E = 30 ms, TR = 1 s, and flip angle = 62°. The slice prescription cov-

red the entire brain, except for the very superior portion of the cortex,

oughly corresponding to superior motor and somatosensory cortices.

dditionally, T1-weighted anatomicals of the same prescription were

cquired, which were used to align the fMRI data to the whole brain

natomical images. Finally, whole-brain anatomical images of each sub-

ect’s brain were acquired using a T1-weighted SPGR sequence with a

esolution of 1 × 1 × 1 mm, FOV = 240 mm, flip angle = 12° This volume

natomy was used to create a cortical surface reconstruction of each sub-

ect’s brain using FreeSurfer 6.0 ( https://surfer.nmr.mgh.harvard.edu/ ).

Functional data from each run was aligned to the individual’s own

rain anatomy. Motion correction was performed both within and across

unctional runs using mrVista ( https://github.com/vistalab/vistasoft )

otion correction algorithms. Runs in which participants’ head mo-

ion was greater than 2 voxels were discarded. No slice-timing correc-

ion or global signal regression was performed. All data were analyzed

ithin individual participants’ native brain anatomy space without spa-

ial smoothing. 

.3. Selective attention task 

During fMRI, subjects viewed grayscale images from various object

ategories: faces, houses, cars, bodies, and pseudo-words while fixat-

ng at the center of the screen. Examples of the stimuli and task are in

 Bugatus et al., 2017 ), Fig. 1 . In each 8-second block, subjects were pre-

https://github.com/akjags/att_class_resid
https://surfer.nmr.mgh.harvard.edu/
https://github.com/vistalab/vistasoft
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6  
ented with a series of eight grayscale images each containing overlaid

xemplars from two object categories (e.g., faces and houses). Before

ach block, a cue indicating the name of the category to be attended

ppeared for 1 second. Participants were instructed to attend to items

f that category (e.g., faces), and to respond with a button press when

n item of the attended category was presented upside-down. 0, 1, or 2

mages of either the attended or ignored category were presented upside

own at random in each block. This paradigm also necessitates active

eature-based ignoring as subjects were instructed to withhold responses

o upside-down items of the ignored category that occurred in the same

requency as the attended one. 

Subjects performed between one and three runs of this task with

ifferent images. Image order and presentation was randomized across

uns. Each run contained 40 blocks. Across blocks, all possible pairings

f the 5 categories and attended/ignored conditions occurred. 

.4. Oddball task 

The same participants also participated in an fMRI experiment in

hich they performed an oddball detection task. In this task, partici-

ants viewed grayscale images from the same categories: faces, houses,

ars, bodies, and pseudo-words. Fixating at the center of the screen,

ubjects are presented with a series of 8 images in each block and were

sked to respond when a phase-scrambled image without an object ap-

eared. Either 0, 1 or 2 phase-scrambled images were presented in each

 image block. Since each item was presented individually, the neural

esponses measured during this task were used as the training data for

he classification analysis. 

.5. Definition of regions of interest (ROIs) 

We used two types of regions of interest (ROIs) to analyze the data:

unctional ROIs (fROIs) to define category-selective regions of VTC at

he individual subject level, and Glasser Atlas ROIs ( Glasser et al., 2016 )

hat tile the entire cortex. 

.5.1. Functional regions of interest (fROIs) 

To independently identify category-selective regions of VTC, we used

n independent localizer experiment in which subjects viewed in blocks

mages from 5 domains (faces, bodies, places, characters and objects).

he localizer used 3 runs, similar to the ( Stigliani et al., 2015 experiment

vailable here: https://github.com/VPNL/fLoc ). 8 subjects participated

n a localizer with an oddball task and 2 categories per domain (as in

tigliani et al., 2015 ) and 24 subjects participated in an experiment with

mages from the same 5 domains and 1 category per domain, and a 2-

ack task (as in Bugatus et al., 2017 ). Prior experiments from our lab

how that both tasks are able to localize VTC category-selective regions

ffectively ( Bugatus et al., 2017 ; Weiner and Grill-Spector, 2010 ). There-

ore, as a logistical convenience, the n = 8 participants who had already

articipated in an Oddball task localizer experiment (and whose fROIs

ad already been successfully identified) were not asked to complete

nother localizer experiment. This did not impact our ability to identify

ROIs in all of the participants. 

We analyzed the localizer data using a general linear model (GLM):

1) Using the GLM we estimated block-averaged response amplitudes

betas) to each category in each voxel. (2) Then, we generated several

ontrast maps comparing responses to images of one domain vs. all other

omains (units of t-values). (3) Category-selective ROIs were defined as

oxels in ventral temporal cortex (VTC) having significantly stronger re-

ponses to images of that domain compared to all others, with a thresh-

ld of t ≥ 3 (as t represents effect size), voxel level, uncorrected. All

ROIs were a minimum of 5mm 

3 and maximum of 177mm 

3 each, with

n average volume of 43.4 ± 6.67mm 

3 . 

Here we analyzed data from one VTC category-selective region from

ach domain (faces, body, place, word) to test if effects vary across do-

ains. As there are multiple face and word-selective ROIs in VTC, we
4 
elected one category-selective region within VTC for each object cate-

ory of interest (faces, houses, bodies, words). This allowed us to com-

ute the average residual correlation across conditions evenly, using

ne region per category for all categories. We chose mFus-Faces be-

ause it is anatomically proximal to OTS-bodies and CoS-places (e.g.,

tigliani 2015), thought to be in the same level of the processing hier-

rchy ( Weiner et al., 2017 ), and we were able to identify these regions

n the majority of our participants. As mOTS-chars is left lateralized

 Gomez et al., 2018 ; Stigliani et al., 2015 ) (only ∼20% of participants

ave bilateral mOTS) but pOTS-chars is found bilaterally, we chose to

se pOTS-chars rather than mOTS-chars as the other category-selective

ROIs are bilateral. Supplementary Table 1 provides the details as to

hich fROI was identified in each participant and hemisphere. 

mFus-faces was defined as a cluster of face-selective voxels in the

ateral fusiform gyrus near or overlapping the anterior tip of the mid

usiform sulcus (MFS), as in ( Weiner et al., 2017 ). We identified mFus-

aces in 19/21 subjects in the right hemisphere and 14/21 subjects in

he left hemisphere. 

CoS-places was defined as a cluster of place-selective voxels in the

ollateral sulcus (CoS) near/overlapping the junction between the CoS

nd the anterior lingual sulcus (ALS) as in ( Weiner et al., 2018 ). We iden-

ified CoS-places in 21/21 subjects in the right hemisphere and 21/21

ubjects in the left hemisphere. 

OTS-bodies was defined as a cluster of body-selective voxels in the oc-

ipital temporal sulcus (OTS), typically between pFus- and mFus-faces

 Weiner et al., 2017 ; Weiner and Grill-Spector, 2010 ). We identified

TS-bodies in 19/21 subjects in the right hemisphere and 10/21 sub-

ects in the left hemisphere. 

pOTS-chars was defined as a cluster of character-selective voxels in

he OTS. We identified pOTS-chars in 13/21 subjects in the right hemi-

phere and 17/21 subjects in the left hemisphere. 

.5.2. Glasser Atlas ROIs 

To independently define ROIs tiling the entire cortex, we used the

lasser Atlas (Multi-Modal Human Connectome Project’s Atlas (HCP-

MP1.0) ( Glasser et al., 2016 ). We chose this brain parcellation be-

ause (i) it is the most up to date parcellation of the entire brain,

nd (ii) it is based both on functional and connectivity properties of

ortical regions which makes it unbiased and appealing for the ques-

ions of interest in the present study. We used the ROIs defined in the

reeSurfer 6.0 ( https://surfer.nmr.mgh.harvard.edu/ ) average brain (la-

els in FreeSurfer) and using cortex-based alignment in FreeSurfer we

ransformed these labels into each participant’s native cortical surface.

hen we imported each ROI from FreeSurfer into mrVista for subsequent

unctional analysis. No additional voxel selection or ROI restriction was

erformed. Because ROI size is non-uniform in the Glasser atlas varies,

e tested whether our key measurements (classification accuracy, Meth-

ds Section 2.6 ; and residual correlations, Methods Section 2.7 ) are cor-

elated with ROI size, which we computed as the number of voxels con-

ained in the ROI on the freesurfer average (fsaverage) inflated surface.

esults shown in Supplementary Table 2 reveal no correlation between

lassification accuracy or residual correlations and Glasser ROI size. 

For analyses in which ROIs were analyzed separately by lobe, we

ssigned each Glasser Atlas ROI to its most proximal lobe: occipital,

emporal, parietal, or frontal. Lobe assignments for each Glasser Atlas

OI are depicted in Supplementary Figure 1. The following Glasser atlas

OIs which overlap the average VTC functional ROIs described above

 Rosenke et al., 2021 ; Weiner et al., 2017 ) were excluded from all sta-

istical analyses: FFC, PH, PHA1, PHA2, PHA3, TE2p, VMV1, VMV2,

MV3. These ROIs are depicted in Supplementary Figure 2. Based on our

ypothesis that regions of the fronto-parietal network (FPN) involved in

oal-directed attention might show particularly notable enhancement of

lassification accuracy (Methods Section 2.6 ) and residual correlations

Methods Section 2.7 ) with attention, we made note of the following

lasser Atlas ROIs that overlap the FPN ( Osher et al., 2019 ): 6a, 6ma,

d, 6v, 6r, i6–8, 8Av, 8C, 55b, FEF, PEF, IFJp, IFJa, IFSp, V7, IP0, IP1,

https://github.com/VPNL/fLoc
https://surfer.nmr.mgh.harvard.edu/
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PS1, IP2, AIP, LIPd, LIPv, VIP, MIP, 7PL, 7 PC, 7AL, and PFt. These

OIs are also depicted in Supplementary Figure 2. 

.6. Category classification from cortical responses 

To assess the degree to which category information is represented

cross cortex, we employed a multi-class support vector machine clas-

ifier (SVM, Boser et al., 1992 ), by constructing multiple one-versus-all

VM classifiers with a linear kernel to predict the object category that

as attended or ignored from multivoxel patterns of activity. The SVM

as trained and tested on distributed responses across voxels of each of

he Glasser Atlas ROIs. Other hyperparameter values include box con-

traint of 1, kernel scale of 1, alpha initialization of 0.5, and a Sequential

inimal Optimization (SMO) solver. 

Classification Procedure : Classification was done independently in

ach ROI from the distributed responses of that ROI. The training and

esting sets were from independent experiments: the training set con-

isted of data from the Oddball task and the test sets were the Attended

r Ignored conditions during the Selective Attention task. We assessed

he performance of the classifier that had been fit to the Oddball task in

redicting the attended or ignored category in the Selective Attention

ask. Prior research suggests that category-specific information from raw

esponse amplitudes (betas) can be cloaked by the mean response across

ll categories ( Margalit et al., 2020 ; Sayres and Grill-Spector, 2008 ).

hus, in the classification analyses, we used t-contrasts to minimize the

hared variance in the cortical responses to different categories (e.g.,

istance from the coil) and to examine the relative contribution of a cat-

gory relative to other categories while taking into account the residual

rror of the GLM. 

Training: The training set for each ROI consisted of the distributed

esponses from the Oddball tasks across the ROI, which were based on

-values. In brief, we first fit data from the Oddball task in each voxel

n the brain using a GLM by convolving the design matrix of the Odd-

all experiment with the hemodynamic response function (hRF) imple-

ented in SPM8 ( https://www.fil.ion.ucl.ac.uk/spm/ ), to estimate re-

ponse amplitudes (betas) for each of the five categories. From the GLM,

e computed in each voxel a t-contrast for each category against all

ther categories. We extracted the distributed pattern of t-values across

oxels in a given ROI and used this to train the classifier. 

Testing: The testing set consisted of data in the same ROI from the

elective Attention task. Like the Oddball task, we fit a GLM in each

oxel to the data of the Selective Attention task, and estimated re-

ponse amplitudes (betas) to each of the 20 conditions of the task (at-

end/ignored × 10 pairings of 5 categories). From this we estimated dis-

ributed responses across the ROI for the attend/ignore conditions for

ach category. Attended: After fitting the GLM to the data of the Selec-

ive Attention task, we computed the t-contrast in each voxel, contrast-

ng all the conditions in which a given category was attended against

ll the conditions in which that category was not present. This results in

 contrasts. We then extracted the distributed pattern of t-values across

oxels in a given ROI to evaluate the classifier. Ignored: Same as at-

ended, but for all conditions in which the category was present and

gnored vs. all conditions in which the category was not present. We

erformed these processing steps separately for each of the 3 runs, giv-

ng us a total of 15 observations for each of our test sets. 

Using the data from the Oddball task as SVM training data, we tested

he performance of the SVM classifier separately on the attended and

gnored conditions. That is, in the attended condition the classifier pre-

icts what category the subject is attending to and in the ignored con-

ition the classifier predicts which category the subject is ignoring. 

In order to perform multiclass classification with a linear SVM, we

mployed the Matlab (mathworks.com) functions fitcsvm and fitcecoc

o train a binary classifier for each category (1 vs. all others) and gen-

rate a prediction based on which classifier had the greatest separation

rom its category boundary to determine the category out of the 5 pos-

ible categories. We computed the noise ceiling performance by ran-

omly permuting the category labels and using the trained multi-class
5 
VM classifier to predict the randomly permuted labels 1000 times. This

ave us a distribution of prediction accuracies, from which we could

stimate the threshold required to exclude 95% of these predictions.

his was computed individually within each subject and each ROI sepa-

ately, and then averaged together to yield a global threshold that could

e compared across all ROIs. However, we also verified that computing

he confidence intervals separately and thresholding each ROI using a

OI-specific threshold did not change the number of ROIs which ex-

eeded chance level classification accuracy in the brain maps. We thus

sed an accuracy threshold of 0.2002 ± 0.0234 to decide which ROIs

xceeded chance level classification. 

Classification control : To test whether classification results are specific

o this dependent variable (t-values), we replicated these classification

nalyses using raw responses (betas) for both the training and testing

ata. Results in Supplementary Figure 3. 

.7. Residual correlation analysis 

To uncover functional relationships associated with top-down signals

etween cortical regions and category-selective regions under attended

nd ignored conditions of the Selective Attention task, we performed a

esidual correlation analysis (Supplementary Figure 4). First, we sought

o isolate the top-down component of the BOLD signal that is indepen-

ent from the bottom-up, stimulus driven component. Thus, we sepa-

ated each voxel’s time course to 2 components: (i) the stimulus-evoked

omponent, and (ii) the residual activity. To estimate the stimulus-

voked activity, we fit a general linear model (GLM) to the time course

y convolving the experimental design matrix with the hemodynamic

esponse function to generate predictors of the contribution of each

ondition to the BOLD response. Fitting each voxel’s time course data,

e estimated betas for each predictor separately for each run. Then we

xtracted the residual activation in each voxel by subtracting the pre-

icted time course calculated from the GLM from the measured voxel

ime course. 

After these whole time course residuals were computed, we extracted

he residual for each trial type: that is, each of four stimulus categories

hich are associated with a VTC category-selective ROI (faces, houses,

odies, and words) separately for when it was presented and attended

e.g., trials in which faces were presented and participants were cued

o attend to faces) and when it was presented and ignored (e.g., trials

n which faces were presented but a different category was attended

o) and these trials from each condition were concatenated. Then, we

alculated mean residuals across voxels of each of the VTC category-

elective fROIs (mFus-Faces, CoS-Houses, OTS-Bodies, OTS-Words) as

ell as each Glasser Atlas ROI to determine the mean residual of each

OI. Since averaging across voxels removes independent noise among

oxels, this residual reflects a component of the brain signal that is

ot explained by the stimulus, for example, top-down attention is not

odeled in the GLM. To determine the correlation in the time-series

f residuals between ROIs, we then calculated the pairwise correlations

etween the average residual of each category selective ROI and each

lasser Atlas ROI. Correlations were calculated separately for trials in

hich the preferred stimulus category for each ROI (e.g., faces for mFus-

aces) was attended and when it was ignored. We refer to these re-

ulting correlations as "residual correlations," as they refer to correla-

ion between the residual signals of pairs of ROIs. Others have referred

o these correlations as "background connectivity" ( Al-Aidroos et al.,

012 ). 

To test whether the GLM captured the stimulus-evoked activity, we

erformed a control analysis, in which we computed correlations in

esidual activity between two trials of the same condition (e.g., face

ttended, body ignored condition). This control was done within each

egion of the Glasser Atlas in each hemisphere and subject (for this anal-

sis, we utilized the 12 subjects who underwent three total runs of the

xperiment to maximize the number of trials of each condition type).

e reasoned that if after removing the stimulus-evoked activity esti-

https://www.fil.ion.ucl.ac.uk/spm/
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ated by the GLM, there still remained some stimulus-related activity

hat was not modeled by the GLM (e.g., offset response), then the within-

egion residual correlations among trials of the same condition would

e significantly positive. However, contrary to this prediction, results

f this analysis show that the distribution of these within-ROI residual

orrelations to the same condition is not significantly greater than zero

mean ± std: − 0.010 ± 0.051; t (11) = − 0.712, p = .492, two-sided). As a

econd control, we conducted the same procedure on the original time

eries prior to removing the activity modeled by the GLM. Results show

hat doing the same analysis on the original data (prior to removing

he task-based activation from the GLM) the mean within-region cor-

elation to different trials of the same condition was positive on aver-

ge (mean ± std: 0.008 ± 0.044) and significantly greater than the distri-

ution generated using the residual correlations ( t (11) = 3.069, p = .011,

wo-sided; Supplementary Figure 5). These analyses provide strong

vidence that the GLM procedure effectively captures the stimulus-

voked activity. Residual correlations were computed using Mat-

ab R2014a (mathworks.com), mrVista ( https://github.com/vistalab/

istasoft ), and SPM8 ( https://www.fil.ion.ucl.ac.uk/spm/software/

pm8/ ). 

.7.1. Chance-Level residual calculations 

To determine chance level residual correlation for each analysis, we

sed permutation testing. We hypothesized that if the residuals reflect

op-down signals then they should be subject-unique. However, if there

emained task-based activity that was not removed by the GLM, it would

ave remained across subjects and thus would have elevated the chance

evel residual correlations between subjects. Thus, for each Glasser At-

as ROI, we calculated correlations between the residuals in that ROI

n one subject with the residuals of a VTC category-selective ROIs for a

andomly-selected condition from a different subject. This process was

epeated over 1000 iterations for each Glasser Atlas ROI, each time

andomly choosing two independent subjects, a VTC category-selective

ROI, and a condition by sampling randomly with replacement. The

ean correlation across these 1000 iterations provides an estimate of the

hance residual correlation which was 0.01 ± 0.03. To further ensure that

his chance-level was a reasonable estimate, we also computed a second

hance-level aimed at breaking the temporal correlations between resid-

als: we randomly shuffled the time series of residuals in each region

nd subject before computing pairwise correlations between residuals

f different ROIs. This random shuffling procedure was repeated 1000

imes for each region of the Glasser Atlas, in each hemisphere, and sub-

ect. Then we calculated the average chance level for each subject by av-

raging over regions and hemispheres and confirmed that no subjects’

huffled chance-level were outliers (greater than two standard devia-

ions of the mean). We then calculated the average chance-level across

ll subjects ( − 0.00002 ± 0.009). Given that this second chance-level was

ess stringent than the above chance-level, we opted to use the stricter

hance-level as a reference point in our figures. 
Table 1 

Linear regression results relating the average clas

sphere during attended and ignored conditions. 

Lobe Hemisphere N Attentional Sc

Occipital Left 18 1.47 

Right 18 2.02 

Temporal Left 33 1.92 

Right 33 1.60 

Parietal Left 47 1.24 

Right 47 1.14 

Frontal Left 73 0.17 

Right 73 0.27 

N represents the number of ROIs per lobe. Bold

scaling after Bonferroni correction for 8 compar

6 
.8. Statistical analyses 

To assess the significance of classification accuracy across Glasser

OIs and residual correlations of Glasser ROIs with VTC ROIs, we

tilized separate three-way repeated measures analyses of variance

ANOVAs) for each metric with factors for lobe (frontal, parietal, tem-

oral and occipital), hemisphere (left or right), and condition (attended

r ignored) totaling 4 × 2 × 2 factors. To determine whether the ef-

ects of selective attention on residual correlations and classification

ccuracy varied systematically by their magnitude, we performed a re-

ression analysis relating the magnitude of the metric (classification ac-

uracy/residual correlations) separately for the attended and ignored

onditions across ROIs in each lobe. The slope of the regression can be

hought of as an attentional scaling factor, which represents the extent

o which attention scales up or scales down each metric; Tables 1 and

 , respectively, provide details of linear regression results, with t and

 values indicating whether the coefficients of the linear regression

re significantly greater than zero (two-sided test). We applied Bonfer-

oni correction for multiple comparisons to account for the eight lin-

ar models applied for each metric (classification accuracy and resid-

al correlations). All statistical analyses were conducted in MATLAB

014a (mathworks.com) and R (Version 3.5.0) using RStudio (Version

.1.383). 

Having computed the classification accuracy as well as the resid-

al correlation for each ROI of the Glasser Atlas, we examined whether

hese measures were related. To quantify the relationship, we computed

inear regressions between classification accuracies and residual corre-

ations with VTC ROIs using data from all Glasser Atlas ROIs. The linear

egressions were computed between the mean subject classification per-

ormance for that ROI and the mean subject residual correlation with the

TC ROIs. The regression analysis was done separately in each hemi-

phere, lobe, and attentional condition (attended, ignored) and these

6 regressions were Bonferroni corrected to account for multiple com-

arisons. To test whether these linear relationships varied significantly

y attention condition, we used stepwise linear regression to predict

lassification accuracy in each hemisphere and condition using residual

orrelations (step 1), attention condition (step 2), and the interaction

etween residual correlations and attention condition (step 3). We re-

ort the results of the final model (step 3) in Table 3 . Improvements in

odel performance at each step were calculated with a Chi-Squared test

sing the “anova ” procedure in R. 

. Results 

.1. Does attention affect the decodability of category information in the 

uman brain? 

To examine the effect of attention on category representations across

ortex, we compared a classifier’s ability to decode category informa-
sification accuracy in each lobe and hemi- 

aling Std. Error t p 

0.21 6.94 3.35 × 10 − 6 

0.23 8.82 1.52 × 10 − 7 

0.21 9.30 1.77 × 10 − 10 

0.19 8.26 2.52 × 10 − 9 

0.25 5.01 8.89 × 10 − 6 

0.20 5.64 1.06 × 10 − 6 

0.13 1.34 0.184 

0.13 2.17 0.034 

 p -values represent significant attentional 

isons. 

https://github.com/vistalab/vistasoft
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Table 2 

Linear regression results relating the mean residual correlations in the attended and ignored 

conditions in each lobe and hemisphere. 

Lobe Hemisphere N Attentional Scaling Std. Error t p 

Occipital Left 18 1.18 0.10 11.56 3.52 × 10 − 9 

Right 18 0.96 0.10 9.88 3.26 × 10 − 8 

Temporal Left 33 0.98 0.05 18.91 < 2.00 × 10 − 16 

Right 33 0.93 0.06 16.35 < 2.00 × 10 − 16 

Parietal Left 47 1.25 0.08 15.66 < 2.00 × 10 − 16 

Right 47 0.99 0.05 18.44 < 2.00 × 10 − 16 

Frontal Left 73 0.91 0.06 16.12 < 2.00 × 10 − 16 

Right 73 0.91 0.04 22.92 < 2.00 × 10 − 16 

N represents the number of ROIs per lobe. Bold p -values represent significant attentional 

scaling after Bonferroni correction (8 comparisons). 

Table 3 

Linear models assessing the relationship between classification accuracy and residual correlations in attended and 

ignored conditions. 

Hemisphere Lobe Variable Estimate Std. Error t value p 

Left Occipital Intercept 0.069 0.140 0.494 0.625 

Residual Correlations 2.081 0.554 3.760 6.85 × 10–4 ∗∗∗ 

Condition 0.023 0.089 0.263 0.794 

Residual Correlations × Condition − 0.554 0.375 − 1.478 0.149 

Temporal Intercept 0.091 0.037 2.425 0.018 ∗ 

Residual Correlations 2.094 0.307 6.825 4.32 × 10–9 ∗∗∗ 

Condition 0.042 0.024 1.786 0.079 

Residual Correlations × Condition − 0.814 0.196 − 4.164 9.85 × 10–5 ∗∗∗ 

Parietal Intercept 0.172 0.036 4.818 5.85 × 10–6 ∗∗∗ 

Residual Correlations 0.720 0.229 3.148 0.002 

Condition 0.003 0.024 0.120 0.905 

Residual Correlations × Condition − 0.286 0.160 − 1.794 0.076 

Frontal Intercept 0.211 0.015 14.344 < 2.00 × 10–16 ∗∗∗ 

Residual Correlations 0.192 0.129 1.492 0.138 

Condition − 0.005 0.010 − 0.548 0.584 

Residual Correlations × Condition − 0.108 0.082 − 1.315 0.190 

Right Occipital Intercept 0.218 0.180 1.209 0.235 

Residual Correlations 1.981 0.788 2.512 0.017 ∗ 

Condition − 0.024 0.114 − 0.207 0.837 

Residual Correlations × Condition − 0.664 0.504 − 1.318 0.197 

Temporal Intercept 0.118 0.030 3.896 2.43 × 10–4 ∗∗∗ 

Residual Correlations 2.157 0.286 7.552 2.37 × 10–10 ∗∗∗ 

Condition 0.021 0.019 1.060 0.293 

Residual Correlations × Condition − 0.764 0.180 − 4.251 7.28 × 10–5 ∗∗∗ 

Parietal Intercept 0.160 0.036 4.440 2.55 × 10–5 ∗∗∗ 

Residual Correlations 0.938 0.244 3.840 2.29 × 10–4 ∗∗∗ 

Condition 0.009 0.023 0.407 0.685 

Residual Correlations × Condition − 0.391 0.157 − 2.496 0.014 ∗ 

Frontal Intercept 0.210 0.014 15.519 < 2.00 × 10–16 ∗∗∗ 

Residual Correlations 0.022 0.130 0.167 0.868 

Condition − 0.007 0.008 − 0.793 0.429 

Residual Correlations × Condition − 0.008 0.082 − 0.097 0.923 

Residual correlations in the attended and ignored conditions were used to predict classification accuracy values in each 

lobe and hemisphere. Bold values represent p -values surviving multiple comparisons correction (Bonferroni, 8 linear 

models). 
∗ p < .05. 
∗ ∗ p < .01. 
∗∗∗ p < .001. 
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ion from brain responses during the Selective Attention task when a

ategory was attended to when it was ignored. We decoded this infor-

ation independently in each ROI of the Glasser Atlas ( Glasser et al.,

016 ) and compared classification accuracy to chance level classifica-

ion. To that end, we used a support vector machine (SVM) classifier

ith a linear kernel to predict from each region’s distributed responses

ither the attended object category or the simultaneously presented ig-

ored object category during each trial of the Selective Attention task

Methods, Section 2.6 ). Importantly, the classifier was trained on dis-

ributed responses from a separate Oddball task, in which the subjects

iewed single stimuli rather than overlaid stimuli, with no attentional

ues. 
7 
Qualitatively, we observed that the category of the attended stimu-

us can be decoded with accuracy above chance in many regions across

he cortex, with the highest decoding accuracy found in visual cortex,

ncluding early visual cortex, lateral occipital cortex (LOC), and ventral

emporal cortex (VTC) ( Fig 2 a). Glasser ROIs with notable classification

ccuracy (greater than 0.5 compared to 0.2 chance level) during the at-

ended condition were: bilateral V2, V3, V3CD, V4, V4t, V8, LO1, LO2,

O3, PIT, and left hemisphere V1 and V3B in the occipital lobe, as well as

ilateral VVC and right hemisphere FST in the temporal lobe ( Fig 2 a).

e observed that several of the Glasser ROIs overlapping the fronto-

arietal network (Supplementary Figure 2) were in the top 15% of ROIs

ith the highest enhancement of classification accuracy with attention:
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Fig. 2. Classification of category information is higher 

for attended than ignored stimuli. Mean classification 

accuracy (proportion of object categories correctly clas- 

sified) across 21 subjects and 5 object categories for (a) 

attended and (b) ignored categories. Maps are shown 

for the inflated lateral (top) and medial (bottom) cor- 

tical surfaces as well as flattened views (right) and are 

thresholded at chance level. That is, gray ROIs represent 

those with classification accuracy below chance level 

(0.2). (c) Mean difference in classification accuracy be- 

tween attended and ignored conditions. Statistical sig- 

nificance values of the difference for each Glasser ROI 

are shown in Supplementary Figure 6a. White indicates 

Glasser ROIs overlapping VTC category-selective ROIs 

which were excluded from analyses. 
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PL, IP0, IPS1, V7, and VIP. Interestingly, we also found that category

nformation was decodable above chance in regions not typically asso-

iated with visual representation, including primary somatosensory cor-

ex and primary motor cortex (2 and 4). Furthermore, we found that the

ategory of the ignored stimulus could also be decoded with accuracy

bove chance in several regions, particularly in Glasser ROIs spanning

he visual cortex in the occipital and temporal cortices ( Fig 2 b). 

To better visualize where in the cortex category classification accu-

acy is enhanced by selective attention, we subtracted in each of the

lasser ROIs the decoding accuracy during the ignored condition from

hat of the attended condition to develop a region-specific measure of

ttentional enhancement. We found that there was an enhancement in

lassification accuracy with attention across multiple cortical ROIs, par-
8 
icularly in the visual cortex, with some minor decrements in classifi-

ation accuracy in frontal lobe ROIs ( Fig 2 c; difference maps showing

tatistical significance in Supplementary Figure 6a). 

To quantify significant differences in classification performance

cross lobes and conditions, we computed mean classification perfor-

ance across lobes for each condition ( Fig 3 a,c) and used a three-way re-

eated measures analysis of variance (rmANOVA), with factors for lobe

occipital/temporal/parietal/frontal) × hemisphere (left/right) × at-

ention condition (attended/ignored) to test the significance of these

esults. The qualitative analysis of classification accuracy combined

ith the rmANOVA revealed three main findings: (i) category infor-

ation varied by lobe (main effect of lobe: F (3,60) = 49.76, p < .001,

p 
2 = 0.713) with highest classification accuracy in the occipital lobe
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Fig. 3. Classification accuracy by lobe, hemisphere, and condition. (a,c) Mean classification accuracy averaged across Glasser ROIs from each lobe: occipital (blue), 

temporal (green), parietal (red) and frontal (orange) lobes, in the left (a) hemisphere and right (c) hemisphere by condition: attended (dark colors) and ignored 

(light colors). Error bars: standard error of the mean across ROIs. (b,d) Same conventions as (a,c) but for each ROI separately. ROIs in the attended (solid line) and 

ignored (dashed line) conditions are ordered by the mean classification accuracy in the attended condition; shaded area: standard error of the mean across subjects. 

O: Occipital; T: Temporal; P: Parietal; F: Frontal. Horizontal lines : chance level; shaded region: the 95% confidence interval. 
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 Fig 3 a,c blue bars, Tukey HSD: all p s < 0.001), (ii) category informa-

ion varied across attended and ignored conditions (main effect of con-

ition: F (1,20) = 9.691, p = .006, 𝜂p 
2 = 0.326) with higher classification ac-

uracy during the attended than ignored condition ( Fig 3 a,c dark vs.

ight bars, Tukey HSD: p < .001), and (iii) the effect of attention var-

ed across lobes: significant interaction between lobe and condition

 F (3,60) = 29.080, p < .001, 𝜂p 
2 = 0.593), whereby there was a larger dif-

erence between attended and ignored conditions in the occipital lobe

nd a smaller difference between conditions in the frontal lobe (Tukey

SD: p s < 0.001). There were no other significant effects (no main ef-

ect of hemisphere, interaction between condition and hemisphere, in-

eraction between lobe and hemisphere, or three-way interaction be-

ween condition, hemisphere, and lobe; p s > 0.05). Results are similar

hen (i) examined separately for each category (faces, bodies, houses,

nd words; Supplementary Figure 7; Supplementary Table 3), suggest-

ng that the results are not driven by a specific salient category, and (ii)

hen classification analyses of distributed responses were done for the

aw signal amplitudes (Supplementary Figure 3). 

We further determined which Glasser ROIs received the greatest

oost from attention by sorting the ROIs in each lobe by their classi-

cation performance in the attended condition and directly visualizing

lassification accuracy across conditions for each ROI ( Fig 3 b,d). Re-

ults indicate that ROIs that have higher classification accuracy for the
9 
ttended condition also tend to have higher classification accuracy for

he ignored condition. Additionally, ROIs with higher classification ac-

uracy during the ignored condition also have larger gains in classifi-

ation performance during the attended condition than ROIs that have

ower classification accuracy. To quantify this attentional enhancement,

e ran a linear regression examining the relationship between mean de-

oding of category information for attended vs. ignored stimuli across

OIs, separately for each lobe and hemisphere. This approach allowed

s to calculate a single scaling factor (the 𝛽 value from the linear model)

epresenting the attentional scaling factor for each lobe and hemisphere.

caling significantly greater than 1 reflects attentional enhancement and

caling significantly less than 1 reflects attentional suppression. Results

how that a linear model well captures the relationship between cate-

ory information for attended vs ignored stimuli (all lobes and hemi-

pheres p s < 0.05, Bonferroni corrected for multiple comparisons, ex-

ept for the left frontal lobe p = .12, full stats in Table 1 ). The attentional

caling factor was 1.47 for the left and 2.02 for the right occipital lobe,

.92 for the left and 1.60 for the right temporal lobe, 1.24 for the left

nd 1.14 for the right parietal lobe, indicating significant attentional en-

ancement of category representations bilaterally in these lobes. In the

rontal lobe, the linear relationship was not significant after Bonferroni

orrection and showed a different trend in that the attentional scaling

actor was less than 1 (0.17 in the left and 0.27 in the right frontal lobe).
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his indicates a trend in which category information in the frontal lobe

as more decodable during the ignored condition than the attended

ondition. 

.2. What is the nature of residual correlations between different cortical 

egions and ventral temporal cortex category-selective ROIs? 

Having determined that the decodability of category information

aries with attention across cortex, we next investigated a potential

orrelate of this attentional enhancement: the strengthening of residual

orrelations between category-selective regions of VTC and other re-

ions of the brain. These residual correlations, computed after regress-

ng out stimulus-evoked BOLD responses, are thought to contain non-

timulus-driven or top-down attention signals that are not time-locked

o stimulus events. One possibility is that residual correlations with a

ategory-selective VTC fROI would be significant and positive only when

hat region’s preferred category is attended. This would suggest that re-

ions that show positive correlations with category-selective fROIs are

nvolved in directing attention to the relevant stimuli. Alternatively,

nding significant residual correlations with the category-selective fROI

hen its preferred category is either attended or ignored would suggest

hat both attending and ignoring involve top-down control. 

To distinguish between these hypotheses, we examined correlations

n residual activity between each of the Glasser ROIs with four category-

elective fROIs of VTC selective to different categories while attend-

ng or ignoring each region’s preferred category. To capture correla-

ions in ongoing activity that were not time-locked to stimulus pre-

entation, we subtracted the stimulus-evoked response in each voxel,

nd then measured the correlation between the mean residual activ-

ty of each region of the Glasser Atlas, and the mean residual activ-

ty in each of the category-selective fROIs of VTC (mFus-Faces, CoS-

ouses, OTS-Bodies, OTS-Words) when subjects were either selectively

ttending or ignoring each category-selective region’s preferred cate-

ory (Methods, Section 2.7 ). We refer to these correlations between

esidual activities as residual correlations and only consider Glasser

OIs that did not overlap with the VTC category-selective regions. We

isualized for each Glasser ROI its mean residual correlation across the

our VTC category-selective regions and all participants ( Fig 4 and Fig

 b,c). Additional visualizations and statistics by category are shown in

upplementary Figure 8 and Supplementary Table 4, respectively. We

ummarized data per lobe ( Fig 5 a,c), and noted that these residual cor-

elation values are well within the ballpark of what would be expected

ased on prior work ( Tompary et al., 2018 ). We then tested whether

here are significant differences in residual correlations to VTC fROIs

sing a three-way repeated-measures ANOVA with factors of lobe (oc-

ipital/temporal/parietal/frontal) × hemisphere (left/right) × attention

ondition (attended/ignored). Results of these analyses reveal four main

ndings. 

First, as visible in Figs 4 and 5 a,b, residual correlations to VTC

ROIs are heterogeneous across brain lobes (main effect of lobe,

 (3,60) = 59.04, p < .001, 𝜂p 
2 = 0.747). Surprisingly, we observed the high-

st residual correlations between ROIs in the occipital lobe ( Fig 5 a,c blue

ars, Tukey HSD: p s < 0.001) despite having regressed out the stimulus-

voked hemodynamic response. This is also evident when examining

ndividual Glasser ROIs, as residual correlations were above chance for

ll occipital ROIs ( Fig 5 b,d), but for only some of the ROIs in the other

obes. Second, we observed a significant interaction between lobe and

ttention condition ( F (3,60) = 4.96, p = .004, 𝜂p 
2 = 0.199), with the great-

st difference between the attended and ignored conditions in the oc-

ipital lobe. The difference between the residual correlations per ROI

or attended and ignored conditions is visualized on the Glasser Atlas

 Fig 4 c) again showing the largest enhancement in ROIs of the occipital

obe. Consistent with the lack of the main effect of attention condition,

n many ROIs the differences in residual correlations are not signifi-

ant at the ROI level (Supplementary Figure 6b). Third, we observed

 significant three-way interaction among lobe, hemisphere, and con-
10 
ition ( F (3,60) = 3.12, p = .033, 𝜂p 
2 = 0.135). This three-way interaction

ppears to be driven primarily by the observation that in the occipital

obe, residual correlations in the attended condition were higher than in

he ignored condition in the left hemisphere (Tukey HSD: p < .001) but

ot the right hemisphere (Tukey HSD: p > .05), whereas this pattern was

ot observed in any other lobe (Tukey HSD: p s > 0.05). 

Ordering the ROIs by residual correlations in the attended condition

n descending order reveals that ROIs with high residual correlations

o VTC fROIs are evident across the occipital, parietal, and temporal

obes ( Fig 5 b,d). In the occipital lobe, the top regions were intermediate

nd high level visual areas: bilateral V3, V3CD, V4, V8 and LO1, left

emisphere V1, V2, V4t, LO2 and PIT; in the temporal lobe: bilateral

VC; and in the parietal lobe: bilateral IP0, IPS1, and MIP, and left

emisphere LIPv ( Fig 5 b,d). We also observed that several Glasser ROIs

verlapping the fronto-parietal network (FPN): 55b, 7 PC, 7AL, 7PL,

IP, FEF, IP0, LIPv, V7 and VIP were among the top 15% of ROIs with

he highest enhancement of residual correlations with attention. 

To test whether the effects of selective attention on residual corre-

ations vary by the magnitude of these residual correlations, we ran a

inear regression relating the mean residual correlations in the attended

nd ignored conditions across ROIs, separately for each lobe and hemi-

phere. In line with our hypothesis, regions with higher residual cor-

elations overall also received the largest attentional modulation in all

obes and hemispheres ( p s < 0.001, all surviving Bonferroni correction

or multiple comparisons, full stats in Table 2 ). The attentional scaling

actor was 1.18 for the left and 0.96 for the right occipital lobe, 0.98 for

he left and 0.93 for the right temporal lobe, 1.25 for the left and 0.99

or the right parietal lobe, and 0.91 for the left and 0.91 for the right

rontal lobe. The attentional scaling factors for the residual correlations

re smaller in magnitude than those for category classification accuracy

nd reveal attentional enhancement (scaling larger than 1) only in the

eft occipital lobe and left parietal lobe, with the largest attentional sup-

ression (scaling less than 1) in the bilateral frontal lobes. 

.3. Does the category decodability within a given region correlate with the 

trength of residual correlations between that region and VTC? 

Our results thus far demonstrate that there is variability in the ex-

ent to which particular ROIs contain visual category information, as

ell as variability in the strength of their residual correlations with VTC

ategory-selective fROIs. Thus, we asked: (1) is there a significant corre-

ation between classification accuracy and the strength of residual corre-

ations with VTC fROIs? (2) Does this relationship vary across attended

nd ignored conditions? We reasoned that finding a positive correlation

etween these metrics as well as a higher correlation among these met-

ics during attended than ignored conditions may suggest that attention

lays an active role in enhancing task relevant category information by

eans of correlated activity among ROIs. To test this hypothesis, we

easured the correlation between mean category classification accu-

acy and residual correlations with VTC fROIs. This analysis was done

cross the Glasser ROIs in each lobe (excluding the ROIs that overlap

he VTC fROIs) and separately for the attended and ignored conditions.

Results shown in Fig 6 reveal three main findings. First, we found sig-

ificant correlations between classification accuracy and residual corre-

ation to category selective ROIs in the occipital, temporal, and parietal

obes ( Fig 6 ; full statistics in Supplementary Table 5). That is, regions

hat show higher classification accuracy also have higher residual cor-

elations with category-selective regions of VTC. Second, these correla-

ions varied across lobes. In particular, these correlations were higher in

he occipital and temporal lobes, and lower in the parietal and frontal

obe. Third, these associations varied by attention condition. For each

emisphere and attention condition, a step-wise linear regression model

elating classification accuracy to residual correlations revealed signif-

cant improvement in model variance explained with the addition of

ttention condition as a factor ( p s < 0.001) and with the addition of an

nteraction term between residual correlations and attention condition
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Fig. 4. Comparisons of residual correlations with VTC 

category-selective regions during attended and ignored con- 

ditions. Mean correlations between residual activity in each 

Glasser ROI and residual activity in VTC category-selective re- 

gions, averaged across object categories and participants, in 

(a) the attended condition and (b) the ignored condition. Gray 

ROIs are those with residual correlations below 0.1. Colored 

ROIs are at least six standard deviations greater than chance 

level (0.01) for visualization purposes. (c) Mean difference 

between attended and ignored residual correlations. Visual- 

ization of these difference maps (c) depicting statistical sig- 

nificance for each ROI may be found in Supplementary Figure 

6b. White indicates Glasser ROIs overlapping VTC category- 

selective ROIs which were excluded from analyses. 
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 p s < 0.001). Table 3 summarizes the results of these linear regressions

ncluding the interaction term by lobe. These interactions were signif-

cant, indicating a strengthening of the relationship between residual

orrelations and classification accuracy with attention, in the bilateral

emporal lobes and the right parietal lobe, although the latter did not

ass correction for multiple comparisons. 

Since the FPN has been hypothesized to be involved in top-down

odulation, we also computed linear regressions between classifica-

ion accuracy and residual correlations for the Glasser Atlas ROIs over-

apping the FPN (Supplementary Figure 9), which are a subset of the

rontal and parietal ROIs. This analysis revealed significant interactions

etween residual correlations and attention condition in both the left

nd right hemisphere fronto-parietal network ( p s < 0.05, Bonferroni cor-
11 
ected; Supplementary Figure 9). As a comparison, we computed these

elationships using the subset of frontal and parietal ROIs after excluding

OIs overlapping the FPN and found that these interactions were lower

han those for FPN ROIs and failed to reach statistical significance af-

er correction for multiple comparisons with the exception of the right

rontal lobe (Supplementary Figure 10). 

Together, these analyses show that there is a strong relationship be-

ween residual correlations and classification accuracy in the occipital,

emporal, and parietal lobes, with significant attentional modulation in

he bilateral temporal lobes. This suggests that regions spanning the oc-

ipital and parietal lobes show coupling between category information

nd residual correlations independent of attention condition while tem-

oral lobes show enhanced coupling when stimuli are attended and cat-
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Fig. 5. Residual correlations to VTC regions by lobe, hemisphere, and condition. (a,c) Mean residual correlations between VTC category-selective regions and each 

Glasser Atlas ROI from the occipital (blue), temporal (green), parietal (red) and frontal (orange) lobes, in the left hemisphere (a) and right hemisphere (c), respectively 

by condition: attended (dark colors) or ignored (light colors). Error bars: standard error of the mean across ROIs. (b,d) Same conventions as (a,c) but for each Glasser 

ROI separately. ROIs in the attended (solid line) and ignored (dashed line) conditions are ordered by the mean residual correlation in the attended condition; shaded 

area : standard error of the mean across subjects. O: Occipital; T: Temporal; P: Parietal; F: Frontal. Horizontal lines: chance level; shaded region : the 95% confidence 

interval. 
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gory information is task-relevant. This effect appears to be primarily

riven by increased category information when stimuli of these cate-

ories are attended. 

. Discussion 

In this study, we investigated the ways that selective attention can in-

uence visual category classification accuracy and the strength of resid-

al correlations with VTC category-selective ROIs across the human cor-

ex, and then assessed the relationship between these measurements.

ur data reveal three main findings. First, we found that when two ob-

ects are simultaneously viewed, the category of the attended object can

e decoded more readily from distributed responses in an ROI than the

ategory of the ignored object. Second, we found that the strength of

esidual correlations with category-selective regions of VTC was higher

hen those regions’ preferred categories were attended compared to

hen they were ignored. Third, we found a positive correlation between

lassification accuracy and the strength of residual correlations to VTC

ategory-selective ROIs, indicating that the stronger the residual corre-
12 
ations in a given region of cortex, the better we could decode category

nformation from that region. Below we discuss the implications of these

ndings on elucidating the neural mechanisms of selective attention. 

.1. Classification accuracy of attended and ignored object category 

epresentations 

Our data contribute to the longstanding debate about whether at-

entional selection occurs “early ” ( Gandhi et al., 1999 ; Martínez et al.,

999 ; Somers et al., 1999 ) or “late ” ( Seidl et al., 2012 ; Shomstein et al.,

019 ; Wojciulik and Kanwisher, 1999 ) in the visual processing hierar-

hy ( Yantis and Johnston, 1990 ). Prior evidence shows that attention

mpacts neural activity in visual cortex in many ways, including in-

reasing neural firing rates ( Motter, 1993 ) and tuning neural responses

 Desimone and Duncan, 1995 ; Kastner et al., 1999 , 1998 ; Reynolds and

eeger, 2009 ). Other evidence from stroke patients with damage to the

ight parietal cortex (a condition known as hemi-spatial neglect) reveal

hat information about visual objects that are outside the scope of atten-

ion still traverses quite far in the brain without being fully suppressed.
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Fig. 6. Attention enhances the correlation between classification accuracy and residual correlations. Each scatterplot depicts the relationship between mean classifi- 

cation accuracy (y-axis) and mean residual correlations (x-axis). Each point is a Glasser Atlas ROI marked by condition (dark-colored X’s: attended; light colored O’s: 

ignored). Data are shown separately for the (a) left hemisphere and (b) right hemisphere. Panels are arranged by lobe: blue: occipital; green: temporal; red: parietal; 

orange: frontal. 
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or example, a hemi-neglect patient who was unable to attend to the left

isual field was still capable of avoiding danger signals on the left side

f a cartoon house ( Marshall and Halligan, 1988 ). These data suggest

hat information about ignored visual objects may still be present in the

rain even if this information is not accessible to conscious awareness.

s such, it is noteworthy that we found greater enhancement of clas-

ification accuracy with attention not in the temporal lobe, but rather,

n early visual and intermediate regions in the occipital lobe, which are

hought to encode low-level and mid-level visual features. This finding is

n line with predictions of the Reverse Hierarchy Theory ( Hochstein and

hissar, 2002 ) which suggests that focal attention to objects enhances

ow-level visual features relevant to the task of identifying objects rather

han the category, or gist, which is encoded in high-level visual regions

f VTC. 

Our data are also consistent with the large body of research sug-

esting that attended stimuli can be decoded across many regions of the

uman brain ( Kay and Yeatman, 2017 ; Bugatus et al., 2017 ; Çukur et al.,

013 ; Lee Masson et al., 2016 ; Peelen et al., 2009 ; Weiner and

rill-Spector, 2010 ; Klein et al., 2014 ). This includes studies using sim-

lar superimposed semi-transparent stimuli to demonstrate the effect of

bject-based attention in face- and house-selective regions of high-level

isual cortex ( O’Craven et al., 1999 ; Serences et al., 2004 ). It is pos-

ible that if we had used a different attention task, such as a spatial

ttention task, we may have found larger attentional effects in the pari-

tal lobe, in line with previous spatial attention results ( Peelen et al.,

009 ; Sprague & Serences, 2013 ). These results also extend prior find-

ngs from our lab showing that both attended and unattended category

nformation can be decoded from distributed responses across the en-

ire lateral occipitotemporal complex (LOTC) as well as ventral temporal
13 
ortex (VTC), but that only attended information can be decoded from

istributed responses across the entire ventrolateral prefrontal cortex

VLPFC) ( Bugatus et al., 2017 ). Extending our prior results, we not only

how the effects of selective attention to attended vs ignored stimuli rel-

tive to training with independent data using a different (oddball) task

ut also reveal the effect of attention at a finer spatial resolution across

he entire brain. One potential mechanism that may underlie improved

lassification accuracy to attended vs ignored objects may be increased

mplitude of BOLD activity and consequently higher signal-to-noise ra-

io ( Buracas and Boynton, 2007 ; Gandhi et al., 1999 ; Martínez et al.,

999 ; Somers et al., 1999 ; Wojciulik and Kanwisher, 1999 ). Fu-

ure studies would be needed to address whether this association is

ausal. 

Our data also suggest that attention may function both by enhancing

ensory representations in visual cortex ( Baldauf and Desimone, 2014 ;

ohen and Tong, 2015 ; Zhou et al., 2015 ), and by flexibly altering the

eadout of those sensory representations in higher order cortical regions

 Birman and Gardner, 2019 ; Bugatus et al., 2017 ; Peelen et al., 2009 ).

lthough we observed significant enhancement in classification accu-

acy with attention, we found that both ignored and attended categories

ould be classified significantly above chance in visual cortex. This im-

lies that if the readout from the visual cortex to the frontal cortex were

xed, then category information would be decodable in the frontal lobe

n both attended and ignored conditions, as in visual cortex. However,

ontrary to this prediction, we found that category information in the

rontal lobe is only decodable for attended stimuli. This suggests a flex-

ble readout of task-relevant information in the frontal lobe and that

ttention may enable the transfer of information from visual cortex to

he frontal lobe. 
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.2. Residual correlations may reflect sharing of attended information 

etween cortical regions 

Two aspects of our data support the hypothesis that residual correla-

ions may reflect the sharing of information about attended visual object

ategories between sensory regions and higher-order cortices. First, we

ound that occipital and temporal lobes had both the strongest category

nformation and the strongest coupling between classification accuracy

nd residual correlations. Second, we found that the bilateral temporal

obes showed the greatest enhancement of coupling between classifica-

ion accuracy and residual correlations with attention. Future studies

sing causal manipulations of information transfer in the brain may fur-

her illuminate whether these residual correlations play an active role

s well as have behavioral consequences. 

Another interesting observation is that there were still substantial

esidual correlations between brain regions and category-selective re-

ions in VTC when those regions’ preferred categories were ignored.

his suggests that top-down control may be necessary not only when

ttending stimuli but also when ignoring stimuli, in line with prior

ork emphasizing the importance of top-down control for both enhance-

ent and suppression of sensory information ( Martinez-Trujillo and

reue, 2004 ; Scolari et al., 2012 ). While we acknowledge that our

esidual correlations do not inform about the directionality of infor-

ation flow, our results set the stage for future studies to assess the

ausal relationships between category information and residual corre-

ations. For example, future studies could test whether manipulation

f residual correlations between sensory and higher-order cortices di-

ectly affects the availability of category information in either of these

egions. 

.3. Implications for clinical research 

Attention difficulties are among the most debilitating symptoms of

ental disorders ( Cotrena et al., 2016 ; Fehnel et al., 2013 ) and are as-

ociated with poorer prognoses ( Majer et al., 2004 ), yet they are often

verlooked. In fact, they remain among the least well-understood neu-

obiologically ( Keller et al., 2019b ) outside of well-documented atten-

ional biases toward negative information ( Gotlib and Joorman, 2010 ).

ecent work has shown that visual selective attention in particular is

everely impaired in a subset of individuals with Major Depressive Dis-

rder ( Keller et al., 2019a ) and individuals with symptoms of general-

zed/physiological anxiety ( Keller et al., 2021 ). In line with burgeoning

fforts in psychiatric research to understand transdiagnostic dimensions

f psychopathology across units of analysis, known as the “RDoC ” ini-

iative ( Insel et al., 2010 ), our work advances our understanding of the

idespread cortical regions involved in selective attention, providing a

oadmap for future studies to probe causal mechanisms in psychiatric

opulations. 

Two key challenges in addressing selective attention impairments in

epression and other mental illnesses are: (1) the observation that selec-

ive attention impairments in depression are often not alleviated with

urrent first-line antidepressant pharmacotherapy ( Keller et al., 2019c ),

nd (2) the lack of precise neural targets for novel treatment devel-

pment targeting specific symptom dimensions ( Williams, 2016 ). First,

o reduce the burden on patients to undergo multiple rounds of treat-

ent attempts (often with debilitating side effects) before finding an

ffective treatment, future studies may utilize our behavioral paradigm

o develop a clinic-ready measure of attention impairment for guiding

ore personalized treatment selection among currently-available op-

ions. Second, our analysis of visual selective attention utilized a data-

riven whole-brain approach to look beyond sensory cortices, opening

he door for the potential development of stimulation therapies tar-

eting a wider range of accessible brain areas. Thus, our study of at-

ention using a low-cost behavioral paradigm lends itself to transla-

ional efforts for mapping attentional difficulties in various psychiatric

opulations. 
14 
. Conclusions 

Our study demonstrates that correlations in residual activity between

igher-order brain areas and the ventral temporal cortex is related to the

haring of task-relevant object category information across cortical re-

ions. Both decodability of object categories and residual correlations

ith regions preferentially processing these object categories are en-

anced when said categories are attended compared to when they are

gnored. Importantly, these findings inform our understanding of how

elective attention influences the representation of information across

he brain by revealing residual correlations between regions that may

eflect the preferential sharing of attended information. Future stud-

es may probe the directionality of this information flow using causal

anipulations, which may have important implications for clinical re-

earch on selective attention impairments in psychiatric illness. 
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